Suppr超能文献

在彩色光照射下进行语言流畅性任务时脑血管血流动力学和全身生理学的个体间变异性:通过无监督机器学习对受试者进行聚类

Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning.

作者信息

Zohdi Hamoon, Natale Luciano, Scholkmann Felix, Wolf Ursula

机构信息

Institute of Complementary and Integrative Medicine, University of Bern, 3012 Bern, Switzerland.

Biomedical Optics Research Laboratory, Neonatology Research, Department of Neonatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.

出版信息

Brain Sci. 2022 Oct 27;12(11):1449. doi: 10.3390/brainsci12111449.

Abstract

There is large intersubject variability in cerebrovascular hemodynamic and systemic physiological responses induced by a verbal fluency task (VFT) under colored light exposure (CLE). We hypothesized that machine learning would enable us to classify the response patterns and provide new insights into the common response patterns between subjects. In total, 32 healthy subjects (15 men and 17 women, age: 25.5 ± 4.3 years) were exposed to two different light colors (red vs. blue) in a randomized cross-over study design for 9 min while performing a VFT. We used the systemic physiology augmented functional near-infrared spectroscopy (SPA-fNIRS) approach to measure cerebrovascular hemodynamics and oxygenation at the prefrontal cortex (PFC) and visual cortex (VC) concurrently with systemic physiological parameters. We found that subjects were suitably classified by unsupervised machine learning into different groups according to the changes in the following parameters: end-tidal carbon dioxide, arterial oxygen saturation, skin conductance, oxygenated hemoglobin in the VC, and deoxygenated hemoglobin in the PFC. With hard clustering methods, three and five different groups of subjects were found for the blue and red light exposure, respectively. Our results highlight the fact that humans show specific reactivity types to the CLE-VFT experimental paradigm.

摘要

在彩色光照射(CLE)下,言语流畅性任务(VFT)诱发的脑血管血流动力学和全身生理反应存在较大的个体间差异。我们假设机器学习将使我们能够对反应模式进行分类,并为受试者之间的共同反应模式提供新的见解。在一项随机交叉研究设计中,总共32名健康受试者(15名男性和17名女性,年龄:25.5±4.3岁)在进行VFT的同时,暴露于两种不同的光颜色(红色与蓝色)下9分钟。我们使用全身生理增强功能近红外光谱(SPA-fNIRS)方法,同时测量前额叶皮层(PFC)和视觉皮层(VC)的脑血管血流动力学和氧合以及全身生理参数。我们发现,根据以下参数的变化,通过无监督机器学习可以将受试者适当地分为不同的组:呼气末二氧化碳、动脉血氧饱和度、皮肤电导、VC中的氧合血红蛋白和PFC中的脱氧血红蛋白。使用硬聚类方法,分别发现蓝光照射和红光照射的受试者有三组和五组不同的类别。我们的结果突出了这样一个事实,即人类对CLE-VFT实验范式表现出特定的反应类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e1/9688708/b3b10311818f/brainsci-12-01449-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验