Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China.
Management Center of Daxiangling Nature Reserve in Yingjing County, Ya'an 625200, China.
Genes (Basel). 2022 Nov 6;13(11):2049. doi: 10.3390/genes13112049.
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of and parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that is a species complex with high genetic divergence, indicating that different clades of represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the -------- fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship ( + ( + (( + ) ( + ( + ( + ( + ))))))) with very strong supports. Remarkably, is embedded in the clade with strong supports, resulting in paraphyly of the genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
蜱虫在疾病传播媒介中位居第二。蜱虫的滋生是威胁大熊猫健康和生存的因素之一。在这里,我们描述了寄生在大熊猫身上的 和 的线粒体基因组,并对新测序的和其他已有的硬蜱线粒体基因组进行了比较和系统发育基因组分析。这六个新确定的线粒体基因组都包含一个典型的基因组成部分,并共享古老节肢动物的基因排列模式。我们的研究表明, 是一个具有高度遗传分化的种复合体,这表明 不同的分支代表不同的物种。比较线粒体基因组分析表明,硬蜱科线粒体基因组的平均 A + T 含量为 78.08%,GC 偏斜值为强负值,而 AT 偏斜值在 0 左右波动。在硬蜱科线粒体基因组中发现了大量的微卫星,主要的微卫星基序是单核苷酸 A 和三核苷酸 AAT。我们总结了五种基因排列类型,并确定 -------- 片段是最保守的区域,而靠近控制区的区域是硬蜱科线粒体基因组重排的热点。基于 15 个基因构建的系统发育树提供了一个非常有说服力的关系( + ( + (( + )( + ( + ( + ( + ))))))),并且得到了非常强的支持。值得注意的是, 嵌入在 分支中,支持度非常强,导致 属的并系发生,因此需要深入的形态学和分子研究来确定 和其密切相关物种的分类地位。我们的研究结果为硬蜱的分子系统发育和进化提供了新的见解,并为种群遗传学评估以及对大熊猫寄生蜱的有效监测和控制提供了基础数据。