Suppr超能文献

一种基于STDC-CT的无人机应急着陆区识别实时语义分割方法。

A Real-Time Semantic Segmentation Method Based on STDC-CT for Recognizing UAV Emergency Landing Zones.

作者信息

Jiang Bo, Chen Zhonghui, Tan Jintao, Qu Ruokun, Li Chenglong, Li Yandong

机构信息

College of Air Traffic Management, Civil Aviation Flight University of China, Guanghan 618307, China.

出版信息

Sensors (Basel). 2023 Jul 19;23(14):6514. doi: 10.3390/s23146514.

Abstract

With the accelerated growth of the UAV industry, researchers are paying close attention to the flight safety of UAVs. When a UAV loses its GPS signal or encounters unusual conditions, it must perform an emergency landing. Therefore, real-time recognition of emergency landing zones on the ground is an important research topic. This paper employs a semantic segmentation approach for recognizing emergency landing zones. First, we created a dataset of UAV aerial images, denoted as UAV-City. A total of 600 UAV aerial images were densely annotated with 12 semantic categories. Given the complex backgrounds, diverse categories, and small UAV aerial image targets, we propose the STDC-CT real-time semantic segmentation network for UAV recognition of emergency landing zones. The STDC-CT network is composed of three branches: detail guidance, small object attention extractor, and multi-scale contextual information. The fusion of detailed and contextual information branches is guided by small object attention. We conducted extensive experiments on the UAV-City, Cityscapes, and UAVid datasets to demonstrate that the STDC-CT method is superior for attaining a balance between segmentation accuracy and inference speed. Our method improves the segmentation accuracy of small objects and achieves 76.5% mIoU on the Cityscapes test set at 122.6 FPS, 68.4% mIoU on the UAVid test set, and 67.3% mIoU on the UAV-City dataset at 196.8 FPS on an NVIDIA RTX 2080Ti GPU. Finally, we deployed the STDC-CT model on Jetson TX2 for testing in a real-world environment, attaining real-time semantic segmentation with an average inference speed of 58.32 ms per image.

摘要

随着无人机行业的加速发展,研究人员密切关注无人机的飞行安全。当无人机失去GPS信号或遇到异常情况时,它必须进行紧急降落。因此,实时识别地面上的紧急降落区域是一个重要的研究课题。本文采用语义分割方法来识别紧急降落区域。首先,我们创建了一个无人机航拍图像数据集,记为UAV-City。总共600张无人机航拍图像被密集标注了12个语义类别。鉴于复杂的背景、多样的类别以及无人机航拍图像目标较小,我们提出了用于无人机紧急降落区域识别的STDC-CT实时语义分割网络。STDC-CT网络由三个分支组成:细节引导、小目标注意力提取器和多尺度上下文信息。详细信息和上下文信息分支的融合由小目标注意力引导。我们在UAV-City、Cityscapes和UAVid数据集上进行了广泛的实验,以证明STDC-CT方法在实现分割精度和推理速度之间的平衡方面具有优势。我们的方法提高了小目标的分割精度,在NVIDIA RTX 2080Ti GPU上,在Cityscapes测试集上以122.6 FPS达到76.5%的平均交并比(mIoU),在UAVid测试集上达到68.4%的mIoU,在UAV-City数据集上以196.8 FPS达到67.3%的mIoU。最后,我们将STDC-CT模型部署在Jetson TX2上进行实际环境测试,实现了平均每张图像推理速度为58.32毫秒的实时语义分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf05/10386455/de1c24313d8c/sensors-23-06514-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验