Suppr超能文献

一种基于自动感兴趣区域提取的眼底相机通用像素间距标定方法。

A Generic Pixel Pitch Calibration Method for Fundus Camera via Automated ROI Extraction.

机构信息

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

Department of Eye Disease Control and Prevention, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China.

出版信息

Sensors (Basel). 2022 Nov 7;22(21):8565. doi: 10.3390/s22218565.

Abstract

Pixel pitch calibration is an essential step to make the fundus structures in the fundus image quantitatively measurable, which is important for the diagnosis and treatment of many diseases, e.g., diabetes, arteriosclerosis, hereditary optic atrophy, etc. The conventional calibration approaches require the specific parameters of the fundus camera or several specially shot images of the chess board, but these are generally not accessible, and the calibration results cannot be generalized to other cameras. Based on automated ROI (region of interest) and optic disc detection, the diameter ratio of ROI and optic disc (ROI-disc ratio) is quantitatively analyzed for a large number of fundus images. With the prior knowledge of the average diameter of an optic disc in fundus, the pixel pitch can be statistically estimated from a large number of fundus images captured by a specific camera without the availability of chess board images or detailed specifics of the fundus camera. Furthermore, for fundus cameras of FOV (fixed field-of-view), the pixel pitch of a fundus image of 45° FOV can be directly estimated according to the automatically measured diameter of ROI in the pixel. The average ROI-disc ratio is approximately constant, i.e., 6.404 ± 0.619 in the pixel, according to 40,600 fundus images, captured by different cameras, of 45° FOV. In consequence, the pixel pitch of a fundus image of 45° FOV can be directly estimated according to the automatically measured diameter of ROI in the pixel, and results show the pixel pitches of Canon CR2, Topcon NW400, Zeiss Visucam 200, and Newvision RetiCam 3100 cameras are 6.825 ± 0.666 μm, 6.625 ± 0.647 μm, 5.793 ± 0.565 μm, and 5.884 ± 0.574 μm, respectively. Compared with the manually measured pixel pitches, based on the method of ISO 10940:2009, i.e., 6.897 μm, 6.807 μm, 5.693 μm, and 6.050 μm, respectively, the bias of the proposed method is less than 5%. Since our method doesn't require chess board images or detailed specifics, the fundus structures on the fundus image can be measured accurately, according to the pixel pitch obtained by this method, without knowing the type and parameters of the camera.

摘要

像素间距校准是使眼底图像中的眼底结构能够定量测量的重要步骤,这对于许多疾病的诊断和治疗至关重要,例如糖尿病、动脉硬化、遗传性视神经萎缩等。传统的校准方法需要眼底相机的特定参数或专门拍摄的棋盘图像,但这些通常无法获得,并且校准结果无法推广到其他相机。基于自动 ROI(感兴趣区域)和视盘检测,对大量眼底图像进行 ROI 与视盘直径比(ROI-盘比)的定量分析。根据眼底平均视盘直径的先验知识,无需棋盘图像或眼底相机的详细具体信息,即可从特定相机拍摄的大量眼底图像中统计估计像素间距。此外,对于 FOV(固定视野)的眼底相机,可以根据自动测量的 ROI 在像素中的直径直接估计 45°FOV 的眼底图像的像素间距。根据 40600 张不同相机拍摄的 45°FOV 的眼底图像,平均 ROI-盘比约为常数,即像素中为 6.404±0.619。因此,可以根据自动测量的 ROI 在像素中的直径直接估计 45°FOV 的眼底图像的像素间距,结果表明佳能 CR2、拓普康 NW400、蔡司 Visucam 200 和 Newvision RetiCam 3100 相机的像素间距分别为 6.825±0.666μm、6.625±0.647μm、5.793±0.565μm 和 5.884±0.574μm。与手动测量的像素间距相比,基于 ISO 10940:2009 的方法,即分别为 6.897μm、6.807μm、5.693μm 和 6.050μm,该方法的偏差小于 5%。由于我们的方法不需要棋盘图像或详细具体信息,因此可以根据该方法获得的像素间距准确测量眼底图像上的眼底结构,而无需了解相机的类型和参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f620/9653591/95c997811279/sensors-22-08565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验