Suppr超能文献

工程与验证肽稳定的聚乳酸-共-羟基乙酸纳米粒用于癌症治疗中血管破坏剂的靶向递送。

Engineering and Validation of a Peptide-Stabilized Poly(lactic--glycolic) Acid Nanoparticle for Targeted Delivery of a Vascular Disruptive Agent in Cancer Therapy.

机构信息

Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States.

出版信息

Bioconjug Chem. 2022 Dec 21;33(12):2348-2360. doi: 10.1021/acs.bioconjchem.2c00418. Epub 2022 Nov 11.

Abstract

Developing a biocompatible and biodegradable nanoparticle (NP) carrier that integrates drug-loading capability, active targeting, and imaging modality is extremely challenging. Herein, we report an NP with a core of poly(lactic--glycolic) acid (PLGA) chemically modified with the drug combretastatin A4 (CA4), a vascular disrupting agent (VDA) in clinical development for ovarian cancer (OvCA) therapy. The NP is stabilized with a short arginine-glycine-aspartic acid-phenylalanine x3 (RGDFFF) peptide via self-assembly of the peptide on the PLGA surface. Importantly, the use of our RGDFFF coating replaces the commonly used polyethylene glycol (PEG) polymer that itself often induces an unwanted immunogenic response. In addition, the RGD motif of the peptide is well-known to preferentially bind to αvβ3 integrin that is implicated in tumor angiogenesis and is exploited as the NP's targeting component. The NP is enhanced with an optical imaging fluorophore label via chemical modification of the PLGA. The RGDFFF-CA4 NPs are synthesized using a nanoprecipitation method and are ∼75 ± 3.7 nm in diameter, where a peptide coating comprises a 2-3 nm outer layer. The NPs are serum stable for 72 h. studies using human umbilical cord vascular endothelial cells (HUVEC) confirmed the high uptake and biological activity of the RGDFFF-CA4 NP. NP uptake and viability reduction were demonstrated in OvCA cells grown in culture, and the NPs efficiently accumulated in tumors in a preclinical OvCA mouse model. The RGDFFF NP did not induce an inflammatory response when cultured with immune cells. Finally, the NP was efficiently taken up by patient-derived OvCA cells, suggesting a potential for future clinical applications.

摘要

开发一种兼具载药能力、主动靶向和成像方式的生物相容性和可生物降解的纳米颗粒(NP)载体极具挑战性。在此,我们报告了一种由聚乳酸-羟基乙酸(PLGA)核组成的 NP,该核经药物 combretastatin A4(CA4)化学修饰,CA4 是一种临床开发用于卵巢癌(OvCA)治疗的血管破坏剂(VDA)。该 NP 通过在 PLGA 表面自组装肽来稳定短肽精氨酸-甘氨酸-天冬氨酸-苯丙氨酸 x3(RGDFFF)。重要的是,我们使用的 RGDFFF 涂层取代了常用的聚乙二醇(PEG)聚合物,PEG 聚合物本身常常会引起不必要的免疫反应。此外,肽的 RGD 基序众所周知优先结合 αvβ3 整联蛋白,该蛋白与肿瘤血管生成有关,并被用作 NP 的靶向成分。通过化学修饰 PLGA,NP 增强了光学成像荧光团标记。RGDFFF-CA4 NPs 是通过纳米沉淀法合成的,直径约为 75 ± 3.7nm,其中肽涂层包含 2-3nm 的外层。NP 在血清中稳定 72 小时。使用人脐带血管内皮细胞(HUVEC)的研究证实了 RGDFFF-CA4 NP 的高摄取和生物活性。在培养的 OvCA 细胞中进行的 NP 摄取和活力降低研究表明,NP 在临床前 OvCA 小鼠模型中有效地在肿瘤中积累。RGDFFF NP 与免疫细胞共培养时不会引起炎症反应。最后,NP 被患者来源的 OvCA 细胞有效摄取,这表明其具有未来临床应用的潜力。

相似文献

3
Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles.
Biomaterials. 2011 Sep;32(26):6226-33. doi: 10.1016/j.biomaterials.2011.04.078. Epub 2011 Jun 11.
4
Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.
Int J Pharm. 2014 Nov 20;475(1-2):547-57. doi: 10.1016/j.ijpharm.2014.08.067. Epub 2014 Sep 4.
5
Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.
J Nanobiotechnology. 2016 Apr 22;14:33. doi: 10.1186/s12951-016-0185-x.
6
7
Engineered nanomedicine for myeloma and bone microenvironment targeting.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10287-92. doi: 10.1073/pnas.1401337111. Epub 2014 Jun 30.
8
Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.
Pharm Res. 2013 Aug;30(8):1956-67. doi: 10.1007/s11095-013-1039-y. Epub 2013 Apr 23.
10
Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.
Bioconjug Chem. 2013 Sep 18;24(9):1429-34. doi: 10.1021/bc400166j. Epub 2013 Aug 21.

引用本文的文献

1
Polymer Nanoparticles Advancements for Gynecological Cancers.
Int J Nanomedicine. 2025 May 26;20:6721-6742. doi: 10.2147/IJN.S527023. eCollection 2025.

本文引用的文献

1
Amino-Acid-Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy.
Adv Mater. 2022 Apr;34(16):e2200139. doi: 10.1002/adma.202200139. Epub 2022 Mar 13.
2
Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy.
Adv Mater. 2021 May;33(21):e2100595. doi: 10.1002/adma.202100595. Epub 2021 Apr 19.
3
Patient-derived organoid (PDO) platforms to facilitate clinical decision making.
J Transl Med. 2021 Jan 21;19(1):40. doi: 10.1186/s12967-020-02677-2.
4
Roles and Functions of ROS and RNS in Cellular Physiology and Pathology.
Cells. 2020 Mar 21;9(3):767. doi: 10.3390/cells9030767.
6
7
Current Status of Patient-Derived Ovarian Cancer Models.
Cells. 2019 May 25;8(5):505. doi: 10.3390/cells8050505.
8
Mesoporous silica nanoparticles for therapeutic/diagnostic applications.
Biomed Pharmacother. 2019 Jan;109:1100-1111. doi: 10.1016/j.biopha.2018.10.167. Epub 2018 Nov 6.
9
Personalized Tumor RNA Loaded Lipid-Nanoparticles Prime the Systemic and Intratumoral Milieu for Response to Cancer Immunotherapy.
Nano Lett. 2018 Oct 10;18(10):6195-6206. doi: 10.1021/acs.nanolett.8b02179. Epub 2018 Sep 27.
10
Enhancing the Delivery of Chemotherapeutics: Role of Biodegradable Polymeric Nanoparticles.
Molecules. 2018 Aug 27;23(9):2157. doi: 10.3390/molecules23092157.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验