文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于磁性三嗪的树枝状大分子作为一种多功能纳米载体,用于高效抗病毒药物传递。

Magnetic triazine-based dendrimer as a versatile nanocarrier for efficient antiviral drugs delivery.

机构信息

Department of Chemistry, Faculty of Science, Arak University, Arak, 38156-88349, Iran.

Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-88349, Iran.

出版信息

Sci Rep. 2022 Nov 14;12(1):19469. doi: 10.1038/s41598-022-24008-9.


DOI:10.1038/s41598-022-24008-9
PMID:36376529
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9662132/
Abstract

Nanoscale engineering is an efficient method for the treatment of multiple infectious diseases. Due to the controllable functionalities, surface properties, and internal cavities, dendrimer-based nanoparticles represent high performance in drug delivery, making their application attractive in pharmaceutical and medicinal chemistry. In this study, a dendritic nanostructure (FeO@SiO@TAD-G3) was designed and fabricated by grafting a triazine-based dendrimer on a magnetic nanomaterial. The structure of synthesized hybrid nanostructure was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, elemental mapping, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The prepared nanostructure (FeO@SiO@TAD-G3) combines the unique properties of magnetic nanoparticles and a hyperbranched dendrimer for biomedical applications. Its dual nature and highly exposed active sites, could make the transportation of drugs to targeted sites of interest through the magnetic field. A study was conducted on model drugs loading (Favipiravir and Zidovudine) and in vitro release behaviour of FeO@SiO@TAD-G3, which was monitored by ultraviolet spectroscopy. The dendritic nanostructure exhibited high drug-loading capacity for Favipiravir (63.2%) and Zidovudine (76.5%). About (90.8% and 80.2%) and (95.5% and 83.4%) of loaded Favipiravir and Zidovudine were released from FeO@SiO@TAD-G3 at pH 1.5 and 6.8 respectively, within 600 min and at 37 °C. The initial fast release attributed to the drug molecules on the surface of nanostructure while the drugs incorporated deeply into the pores of the FeO@SiO@TAD-G3 released with a delay. We proposed that FeO@SiO@TAD-G3 could be tested as an effective carrier in the targeted (cellular or tissue) delivery of drugs. We think that the prepared nanostructure will not deposit in the liver and lungs due to the small size of the nanoparticles.

摘要

纳米技术是治疗多种传染病的有效方法。由于具有可控的功能、表面性质和内部空腔,基于树突的纳米粒子在药物传递方面表现出很高的性能,使其在制药和药物化学领域的应用具有吸引力。在本研究中,设计并制备了一种树枝状纳米结构(FeO@SiO@TAD-G3),通过将三嗪基树突接枝到磁性纳米材料上实现。通过傅里叶变换红外光谱(FT-IR)、X 射线衍射(XRD)、能谱(EDX)、元素映射、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)和振动样品磁强计(VSM)对合成的杂化纳米结构的结构进行了表征。所制备的纳米结构(FeO@SiO@TAD-G3)结合了磁性纳米粒子和超支化树突的独特性质,可用于生物医学应用。其双重性质和高度暴露的活性位点,可以使药物通过磁场运输到感兴趣的靶向部位。对模型药物(法匹拉韦和齐多夫定)的负载和 FeO@SiO@TAD-G3 的体外释放行为进行了研究,通过紫外光谱进行了监测。树枝状纳米结构对法匹拉韦(63.2%)和齐多夫定(76.5%)具有高的药物负载能力。在 pH 1.5 和 6.8 下,分别有(90.8%和 80.2%)和(95.5%和 83.4%)负载的法匹拉韦和齐多夫定从 FeO@SiO@TAD-G3 中释放出来,时间为 600 分钟,温度为 37°C。最初的快速释放归因于纳米结构表面的药物分子,而深入到 FeO@SiO@TAD-G3 孔隙中的药物则延迟释放。我们提出,FeO@SiO@TAD-G3 可以作为靶向(细胞或组织)药物递送的有效载体进行测试。我们认为,由于纳米粒子的尺寸较小,因此不会在肝脏和肺部中沉积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/7d9848417964/41598_2022_24008_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/6ac11ab15e22/41598_2022_24008_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/2c069b31dc8d/41598_2022_24008_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/2f114a50713d/41598_2022_24008_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/036fcf19cb79/41598_2022_24008_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/1f13434e3f22/41598_2022_24008_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/ab5c8347dc8d/41598_2022_24008_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/417dcd91f813/41598_2022_24008_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/5cd810aff92c/41598_2022_24008_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/0462bce978ef/41598_2022_24008_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/08ad3b195a4e/41598_2022_24008_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/29056f2a3379/41598_2022_24008_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/7d9848417964/41598_2022_24008_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/6ac11ab15e22/41598_2022_24008_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/2c069b31dc8d/41598_2022_24008_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/2f114a50713d/41598_2022_24008_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/036fcf19cb79/41598_2022_24008_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/1f13434e3f22/41598_2022_24008_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/ab5c8347dc8d/41598_2022_24008_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/417dcd91f813/41598_2022_24008_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/5cd810aff92c/41598_2022_24008_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/0462bce978ef/41598_2022_24008_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/08ad3b195a4e/41598_2022_24008_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/29056f2a3379/41598_2022_24008_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c53/9663447/7d9848417964/41598_2022_24008_Fig12_HTML.jpg

相似文献

[1]
Magnetic triazine-based dendrimer as a versatile nanocarrier for efficient antiviral drugs delivery.

Sci Rep. 2022-11-14

[2]
Elegant pH-Responsive Nanovehicle for Drug Delivery Based on Triazine Dendrimer Modified Magnetic Nanoparticles.

Langmuir. 2017-8-15

[3]
Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin.

Int J Biol Macromol. 2020-8-1

[4]
Efficient synthesis of benzoacridines and indenoquinolines catalyzed by acidic magnetic dendrimer.

Sci Rep. 2024-4-16

[5]
Improvement on controllable fabrication of streptavidin-modified three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites with low fluorescence background.

J Biomed Nanotechnol. 2013-4

[6]
Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles.

Int J Biol Macromol. 2018-12-17

[7]
Antifungal activity of FeO@SiO/Schiff-base/Cu(II) magnetic nanoparticles against pathogenic Candida species.

Sci Rep. 2024-3-11

[8]
Synthesis and surface modification of magnetic FeO@SiO core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media.

Environ Sci Pollut Res Int. 2021-6

[9]
Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application.

Spectrochim Acta A Mol Biomol Spectrosc. 2015-9-5

[10]
Synthesis, Characterization, Biomedical Application, Molecular Dynamic Simulation and Molecular Docking of Schiff Base Complex of Cu(II) Supported on FeO/SiO/APTS.

Int J Nanomedicine. 2020-4-20

引用本文的文献

[1]
Photo-Clickable Triazine-Trione Thermosets as Promising 3D Scaffolds for Tissue Engineering Applications.

Adv Healthc Mater. 2024-10

[2]
Current status, challenges and prospects of antifouling materials for oncology applications.

Front Oncol. 2024-5-8

[3]
An immobilized Schiff base-Mn complex as a hybrid magnetic nanocatalyst for green synthesis of biologically active [4,3-]pyrido[1,2-]pyrimidin-6-ones.

Nanoscale Adv. 2024-4-4

[4]
Efficient synthesis of benzoacridines and indenoquinolines catalyzed by acidic magnetic dendrimer.

Sci Rep. 2024-4-16

[5]
Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents.

Pharmaceutics. 2023-4-7

本文引用的文献

[1]
Anti-Influenza Virus Study of Composite Material with MIL-101(Fe)-Adsorbed Favipiravir.

Molecules. 2022-3-31

[2]
Mechanism of Action of Small-Molecule Agents in Ongoing Clinical Trials for SARS-CoV-2: A Review.

Front Pharmacol. 2022-2-25

[3]
Modification of Magnetite Nanoparticles with Triazine-Based Dendrons and Their Application as Drug-Transporting Systems.

Int J Mol Sci. 2021-10-21

[4]
Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases.

Mol Pharm. 2021-10-4

[5]
The efficacy and safety of Favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials.

Sci Rep. 2021-5-26

[6]
Magnetic polyamidoamine dendrimers for magnetic separation and sensitive determination of organochlorine pesticides from water samples by high-performance liquid chromatography.

J Environ Sci (China). 2021-4

[7]
Novel Treatments of Adult T Cell Leukemia Lymphoma.

Front Microbiol. 2020-5-28

[8]
The Correlation between Physical Crosslinking and Water-Soluble Drug Release from Chitosan-Based Microparticles.

Pharmaceutics. 2020-5-16

[9]
Tailoring the Substitution Pattern on 1,3,5-Triazine for Targeting Cyclooxygenase-2: Discovery and Structure-Activity Relationship of Triazine-4-Aminophenylmorpholin-3-one Hybrids that Reverse Algesia and Inflammation in Swiss Albino Mice.

J Med Chem. 2018-8-20

[10]
Dendrimers: A versatile nanocarrier for drug delivery and targeting.

Int J Pharm. 2018-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索