Suppr超能文献

多分辨率脆弱性指数在印度 COVID-19 传播中的作用:基于贝叶斯模型的分析。

Role of multiresolution vulnerability indices in COVID-19 spread in India: a Bayesian model-based analysis.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

BMJ Open. 2022 Nov 17;12(11):e056292. doi: 10.1136/bmjopen-2021-056292.

Abstract

OBJECTIVES

COVID-19 has differentially affected countries, with health infrastructure and other related vulnerability indicators playing a role in determining the extent of its spread. Vulnerability of a geographical region to COVID-19 has been a topic of interest, particularly in low-income and middle-income countries like India to assess its multifactorial impact on incidence, prevalence or mortality. This study aims to construct a statistical analysis pipeline to compute such vulnerability indices and investigate their association with metrics of the pandemic growth.

DESIGN

Using publicly reported observational socioeconomic, demographic, health-based and epidemiological data from Indian national surveys, we compute contextual COVID-19 Vulnerability Indices (cVIs) across multiple thematic resolutions for different geographical and spatial administrative regions. These cVIs are then used in Bayesian regression models to assess their impact on indicators of the spread of COVID-19.

SETTING

This study uses district-level indicators and case counts data for the state of Odisha, India.

PRIMARY OUTCOME MEASURE

We use instantaneous R (temporal average of estimated time-varying reproduction number for COVID-19) as the primary outcome variable in our models.

RESULTS

Our observational study, focussing on 30 districts of Odisha, identified housing and hygiene conditions, COVID-19 preparedness and epidemiological factors as important indicators associated with COVID-19 vulnerability.

CONCLUSION

Having succeeded in containing COVID-19 to a reasonable level during the first wave, the second wave of COVID-19 made greater inroads into the hinterlands and peripheral districts of Odisha, burdening the already deficient public health system in these areas, as identified by the cVIs. Improved understanding of the factors driving COVID-19 vulnerability will help policy makers prioritise resources and regions, leading to more effective mitigation strategies for the present and future.

摘要

目的

COVID-19 在各国的影响程度存在差异,卫生基础设施和其他相关脆弱性指标在确定其传播范围方面发挥着作用。地理区域对 COVID-19 的脆弱性一直是一个研究课题,特别是在印度等中低收入国家,以评估其对发病率、患病率或死亡率的多因素影响。本研究旨在构建一个统计分析管道,计算这些脆弱性指数,并研究它们与大流行增长指标的关联。

设计

使用来自印度全国调查的公开报告的观察性社会经济、人口统计学、基于健康和流行病学数据,我们为不同的地理和空间行政区计算了多个主题分辨率的情境 COVID-19 脆弱性指数 (cVI)。然后,我们在贝叶斯回归模型中使用这些 cVI 来评估它们对 COVID-19 传播指标的影响。

设置

本研究使用印度奥里萨邦的地区指标和病例计数数据。

主要结果测量指标

我们将即时 R(COVID-19 估计时变繁殖数的时间平均值)用作模型中的主要结果变量。

结果

我们的观察性研究集中在奥里萨邦的 30 个区,确定了住房和卫生条件、COVID-19 准备情况和流行病学因素是与 COVID-19 脆弱性相关的重要指标。

结论

在第一波疫情中成功地将 COVID-19 控制在合理水平后,第二波 COVID-19 更深入地进入了奥里萨邦的内陆和边缘地区,给这些地区本已不足的公共卫生系统带来了负担,正如 cVI 所确定的那样。更好地了解导致 COVID-19 脆弱性的因素将有助于决策者确定资源和地区的优先级,从而为当前和未来制定更有效的缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9f/9676421/3213eee758e5/bmjopen-2021-056292f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验