Department of Biostatistics, School of Public Health, University of Michigan, 1420 Washington Heights, Ann Arbor, MI, 48109-2029, USA.
Indian Statistical Institute, Kolkata, West Bengal, 700108, India.
Sci Rep. 2021 May 7;11(1):9748. doi: 10.1038/s41598-021-89127-1.
Susceptible-Exposed-Infected-Removed (SEIR)-type epidemiologic models, modeling unascertained infections latently, can predict unreported cases and deaths assuming perfect testing. We apply a method we developed to account for the high false negative rates of diagnostic RT-PCR tests for detecting an active SARS-CoV-2 infection in a classic SEIR model. The number of unascertained cases and false negatives being unobservable in a real study, population-based serosurveys can help validate model projections. Applying our method to training data from Delhi, India, during March 15-June 30, 2020, we estimate the underreporting factor for cases at 34-53 (deaths: 8-13) on July 10, 2020, largely consistent with the findings of the first round of serosurveys for Delhi (done during June 27-July 10, 2020) with an estimated 22.86% IgG antibody prevalence, yielding estimated underreporting factors of 30-42 for cases. Together, these imply approximately 96-98% cases in Delhi remained unreported (July 10, 2020). Updated calculations using training data during March 15-December 31, 2020 yield estimated underreporting factor for cases at 13-22 (deaths: 3-7) on January 23, 2021, which are again consistent with the latest (fifth) round of serosurveys for Delhi (done during January 15-23, 2021) with an estimated 56.13% IgG antibody prevalence, yielding an estimated range for the underreporting factor for cases at 17-21. Together, these updated estimates imply approximately 92-96% cases in Delhi remained unreported (January 23, 2021). Such model-based estimates, updated with latest data, provide a viable alternative to repeated resource-intensive serosurveys for tracking unreported cases and deaths and gauging the true extent of the pandemic.
易感性-暴露-感染-移除(SEIR)型流行病学模型,对潜伏性未确诊感染进行建模,可以在假设检测完美的情况下预测未报告的病例和死亡。我们应用了一种我们开发的方法,该方法考虑了用于检测活跃 SARS-CoV-2 感染的诊断 RT-PCR 检测的高假阴性率,以应用于经典 SEIR 模型。在实际研究中,未确诊病例和假阴性的数量是不可观察的,基于人群的血清学调查可以帮助验证模型预测。我们将该方法应用于 2020 年 3 月 15 日至 6 月 30 日期间在印度德里的训练数据,我们估计 2020 年 7 月 10 日病例的漏报率为 34-53(死亡:8-13),这与德里的第一轮血清学调查(在 2020 年 6 月 27 日至 7 月 10 日期间进行)的结果基本一致,估计 IgG 抗体的流行率为 22.86%,从而得出病例的漏报率为 30-42。综合来看,这意味着德里大约有 96-98%的病例未报告(2020 年 7 月 10 日)。使用 2020 年 3 月 15 日至 12 月 31 日期间的训练数据进行的最新计算得出,2021 年 1 月 23 日病例的漏报率估计为 13-22(死亡:3-7),这与德里最新(第五轮)血清学调查(在 2021 年 1 月 15 日至 23 日期间进行)的结果基本一致,估计 IgG 抗体的流行率为 56.13%,从而得出病例漏报率的估计范围为 17-21。综合来看,这些更新后的估计表明,德里大约有 92-96%的病例未报告(2021 年 1 月 23 日)。这种基于模型的估计,使用最新数据进行更新,为追踪未报告的病例和死亡以及评估大流行的真实程度提供了一种可行的替代方法,而无需重复进行资源密集型的血清学调查。