Suppr超能文献

揭示非正规城市中的商业活动。

Uncovering commercial activity in informal cities.

作者信息

Straulino Daniel, Saldarriaga Juan C, Gómez Jairo A, Duque Juan C, O'Clery Neave

机构信息

Centre for Advanced Spatial Analysis, University College London, London, UK.

Mathematical Institute, University of Oxford, Oxford, UK.

出版信息

R Soc Open Sci. 2022 Nov 2;9(11):211841. doi: 10.1098/rsos.211841. eCollection 2022 Nov.

Abstract

Knowledge of the spatial organization of economic activity within a city is a key to policy concerns. However, in developing cities with high levels of informality, this information is often unavailable. Recent progress in machine learning together with the availability of street imagery offers an affordable and easily automated solution. Here, we propose an algorithm that can detect what we call using street view imagery. By using Medellín, Colombia as a case study, we illustrate how this approach can be used to uncover previously unseen economic activity. By applying spatial analysis to our dataset, we detect a polycentric structure with five distinct clusters located in both the established centre and peripheral areas. Comparing the density of visible establishments with that of registered firms, we infer that informal activity concentrates in poor but densely populated areas. Our findings highlight the large gap between what is captured in official data and the reality on the ground.

摘要

了解城市内经济活动的空间组织是政策关注的关键。然而,在非正规程度较高的发展中城市,此类信息往往难以获取。机器学习的最新进展以及街景图像的可得性提供了一种经济实惠且易于自动化的解决方案。在此,我们提出一种算法,该算法能够利用街景图像检测我们所谓的[此处原文缺失具体所指内容]。通过将哥伦比亚麦德林作为案例研究,我们说明了如何运用这种方法来揭示此前未被发现的经济活动。通过对我们的数据集进行空间分析,我们检测到一个多中心结构,其中五个不同的集群分布在既有市中心和周边地区。将可见企业的密度与注册公司的密度进行比较,我们推断非正规活动集中在贫困但人口密集的地区。我们的研究结果凸显了官方数据所反映的情况与实际情况之间的巨大差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b84b/9626253/0c9fc828da77/rsos211841f01.jpg

相似文献

1
Uncovering commercial activity in informal cities.揭示非正规城市中的商业活动。
R Soc Open Sci. 2022 Nov 2;9(11):211841. doi: 10.1098/rsos.211841. eCollection 2022 Nov.
2
Urban visual intelligence: Uncovering hidden city profiles with street view images.城市视觉智能:利用街景图像揭示隐藏的城市特征。
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2220417120. doi: 10.1073/pnas.2220417120. Epub 2023 Jun 26.

引用本文的文献

本文引用的文献

1
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
3
Urban mobility and neighborhood isolation in America's 50 largest cities.美国 50 个最大城市的城市流动性和社区隔离。
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7735-7740. doi: 10.1073/pnas.1802537115. Epub 2018 Jul 9.
5
Computer vision uncovers predictors of physical urban change.计算机视觉揭示了物理城市变化的预测因素。
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7571-7576. doi: 10.1073/pnas.1619003114. Epub 2017 Jul 6.
8
MEASURING ECONOMIC GROWTH FROM OUTER SPACE.从外太空测量经济增长
Am Econ Rev. 2012 Apr;102(2):994-1028. doi: 10.1257/aer.102.2.994.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验