Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK.
Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
Cell Rep Methods. 2022 Nov 21;2(11):100348. doi: 10.1016/j.crmeth.2022.100348.
Automated microscopy and computational image analysis has transformed cell biology, providing quantitative, spatially resolved information on cells and their constituent molecules from the sub-micron to the whole-organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue microscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical tool set for which the required data are readily captured using standard protocols and microscopy equipment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tissues in terms of the applicability of different statistical measures and their accuracy and demonstrate how spatial analyses offer a great deal more than just basic quantification of biological variance. Ultimately, we highlight how statistical modeling can help reveal the hierarchical spatial processes that connect the properties of individual cells to the establishment of biological function.
自动化显微镜和计算图像分析改变了细胞生物学,从亚微米到整个器官尺度,提供了关于细胞及其组成分子的定量、空间分辨信息。在这里,我们探讨了空间统计学在组织显微镜数据中细胞关系的应用,并讨论了空间统计学如何为细胞术提供了强大但未充分利用的数学工具集,而这些工具集所需的数据可以使用标准协议和显微镜设备轻松捕获。我们还强调了在不同统计措施的适用性及其准确性方面,需要仔细考虑组织的结构异质性,并且展示了空间分析如何不仅仅提供了对生物方差的基本量化。最终,我们强调了统计建模如何帮助揭示将单个细胞的特性与生物功能的建立联系起来的层次空间过程。
BMC Bioinformatics. 2008-2-4
BMC Bioinformatics. 2010-7-7
BMC Bioinformatics. 2011-4-28
Cytometry A. 2020-3
BMC Bioinformatics. 2007-3-30
Annu Rev Biomed Eng. 2010-8-15
Nat Rev Methods Primers. 2024
PLoS Comput Biol. 2025-8-21
PLoS Comput Biol. 2022-6
Front Immunol. 2022-1-24
Nat Methods. 2022-2
Genome Res. 2021-10
Nat Methods. 2021-10
Nat Methods. 2021-1
Bioinformatics. 2021-6-16
Commun Biol. 2020-10-23