文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

空间统计学是一种通过组织图像分析来量化细胞邻居关系和生物过程的综合工具。

Spatial statistics is a comprehensive tool for quantifying cell neighbor relationships and biological processes via tissue image analysis.

机构信息

Department of Biomedical Engineering, Swansea University, Swansea SA1 8QQ, UK.

Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.

出版信息

Cell Rep Methods. 2022 Nov 21;2(11):100348. doi: 10.1016/j.crmeth.2022.100348.


DOI:10.1016/j.crmeth.2022.100348
PMID:36452868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9701617/
Abstract

Automated microscopy and computational image analysis has transformed cell biology, providing quantitative, spatially resolved information on cells and their constituent molecules from the sub-micron to the whole-organ scale. Here we explore the application of spatial statistics to the cellular relationships within tissue microscopy data and discuss how spatial statistics offers cytometry a powerful yet underused mathematical tool set for which the required data are readily captured using standard protocols and microscopy equipment. We also highlight the often-overlooked need to carefully consider the structural heterogeneity of tissues in terms of the applicability of different statistical measures and their accuracy and demonstrate how spatial analyses offer a great deal more than just basic quantification of biological variance. Ultimately, we highlight how statistical modeling can help reveal the hierarchical spatial processes that connect the properties of individual cells to the establishment of biological function.

摘要

自动化显微镜和计算图像分析改变了细胞生物学,从亚微米到整个器官尺度,提供了关于细胞及其组成分子的定量、空间分辨信息。在这里,我们探讨了空间统计学在组织显微镜数据中细胞关系的应用,并讨论了空间统计学如何为细胞术提供了强大但未充分利用的数学工具集,而这些工具集所需的数据可以使用标准协议和显微镜设备轻松捕获。我们还强调了在不同统计措施的适用性及其准确性方面,需要仔细考虑组织的结构异质性,并且展示了空间分析如何不仅仅提供了对生物方差的基本量化。最终,我们强调了统计建模如何帮助揭示将单个细胞的特性与生物功能的建立联系起来的层次空间过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/82957b95687a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/440ac11d4b40/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/a0d30847cce0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/3e35ba37bc90/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/82957b95687a/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/440ac11d4b40/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/a0d30847cce0/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/3e35ba37bc90/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c65/9701617/82957b95687a/gr4.jpg

相似文献

[1]
Spatial statistics is a comprehensive tool for quantifying cell neighbor relationships and biological processes via tissue image analysis.

Cell Rep Methods. 2022-11-21

[2]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[3]
Image-based quantification and mathematical modeling of spatial heterogeneity in ESC colonies.

Cytometry A. 2015-6

[4]
Visualizing and clustering high throughput sub-cellular localization imaging.

BMC Bioinformatics. 2008-2-4

[5]
Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images.

BMC Bioinformatics. 2010-7-7

[6]
STSE: Spatio-Temporal Simulation Environment Dedicated to Biology.

BMC Bioinformatics. 2011-4-28

[7]
PySpacell: A Python Package for Spatial Analysis of Cell Images.

Cytometry A. 2020-3

[8]
Fast automated cell phenotype image classification.

BMC Bioinformatics. 2007-3-30

[9]
Characterization of biological processes through automated image analysis.

Annu Rev Biomed Eng. 2010-8-15

[10]
De novo discovery of metabolic heterogeneity with immunophenotype-guided imaging mass spectrometry.

Mol Metab. 2020-6

引用本文的文献

[1]
Spatial Multiplexing and Omics.

Nat Rev Methods Primers. 2024

[2]
CytoSpatio: Learning cell type spatial relationships using multirange, multitype point process models.

PLoS Comput Biol. 2025-8-21

[3]
A toolkit for mapping cell identities in relation to neighbors reveals conserved patterning of neuromesodermal progenitor populations.

PLoS Biol. 2025-7-15

[4]
Single-cell spatial transcriptomics reveals immunotherapy-driven bone marrow niche remodeling in AML.

Sci Adv. 2025-7-11

[5]
Topological data analysis of pattern formation of human induced pluripotent stem cell colonies.

Sci Rep. 2025-4-4

[6]
Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues.

J Imaging. 2025-2-15

[7]
Single Cell Spatial Transcriptomics Reveals Immunotherapy-Driven Bone Marrow Niche Remodeling in AML.

bioRxiv. 2025-1-27

[8]
Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics.

Nat Commun. 2025-2-13

[9]
Society for Immunotherapy of Cancer: updates and best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) image analysis and data sharing.

J Immunother Cancer. 2025-1-8

[10]
CytoSpatio: Learning cell type spatial relationships using multirange, multitype point process models.

bioRxiv. 2024-11-3

本文引用的文献

[1]
cytoNet: Spatiotemporal network analysis of cell communities.

PLoS Comput Biol. 2022-6

[2]
Editorial: Defining the Spatial Organization of Immune Responses to Cancer and Viruses .

Front Immunol. 2022-1-24

[3]
Squidpy: a scalable framework for spatial omics analysis.

Nat Methods. 2022-2

[4]
Advances in spatial transcriptomic data analysis.

Genome Res. 2021-10

[5]
DeepImageJ: A user-friendly environment to run deep learning models in ImageJ.

Nat Methods. 2021-10

[6]
Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis.

Nat Biotechnol. 2022-1

[7]
Giotto: a toolbox for integrative analysis and visualization of spatial expression data.

Genome Biol. 2021-3-8

[8]
Method of the Year: spatially resolved transcriptomics.

Nat Methods. 2021-1

[9]
Quantification of spatial tumor heterogeneity in immunohistochemistry staining images.

Bioinformatics. 2021-6-16

[10]
Unraveling spatial cellular pattern by computational tissue shuffling.

Commun Biol. 2020-10-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索