Suppr超能文献

在 ECMO 中周期性挤压下的红细胞疲劳。

Fatigue of red blood cells under periodic squeezes in ECMO.

机构信息

Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.

School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2210819119. doi: 10.1073/pnas.2210819119. Epub 2022 Dec 1.

Abstract

Hemolysis usually happens instantly when red blood cells (RBCs) rupture under a high shear stress. However, it is also found to happen gradually in the extracorporeal membrane oxygenation (ECMO) under low but periodic squeezes. In particular, the gradual hemolysis is accompanied by a progressive change in morphology of RBCs. In this work, the gradual hemolysis is studied in a microfluidic device with arrays of narrow gaps the same as the constructions in ECMO. RBCs are seen to deform periodically when they flow through the narrow gaps, which causes the release of adenosine-triphosphate (ATP) from RBCs. The reduced ATP level in the cells leads to the fatigue of RBCs with the progressive changes in morphology and the gradual loss of deformability. An empirical model for the fatigue of RBCs is established under the periodic squeezes with controlled deformation, and it reveals a different way of the hemolysis that is dominated by the squeeze frequency. This finding brings a new insight into the mechanism of hemolysis, and it helps to improve the design of circulatory support devices.

摘要

溶血通常在高剪切应力下红细胞 (RBC) 破裂时立即发生。然而,也发现在体外膜肺氧合 (ECMO) 下,在低但周期性的挤压下逐渐发生。特别是,逐渐的溶血伴随着 RBC 形态的渐进变化。在这项工作中,在具有与 ECMO 结构相同的狭窄间隙阵列的微流控装置中研究了逐渐的溶血。当 RBC 通过狭窄的间隙流动时,它们会周期性地变形,这导致 ATP(三磷酸腺苷)从 RBC 中释放出来。细胞中 ATP 水平的降低导致 RBC 疲劳,形态发生渐进性变化,变形能力逐渐丧失。在周期性挤压下,建立了一个受控变形的 RBC 疲劳经验模型,该模型揭示了一种由挤压频率主导的不同溶血方式。这一发现为溶血机制提供了新的见解,并有助于改进循环支持设备的设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c28a/9894116/a32b9d7bff51/pnas.2210819119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验