Suppr超能文献

利用深度迁移学习从 ICU 中的动态心电图监测仪中检测高钾血症:个性化医疗方法。

Using Deep Transfer Learning to Detect Hyperkalemia From Ambulatory Electrocardiogram Monitors in Intensive Care Units: Personalized Medicine Approach.

机构信息

Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung City, Taiwan.

Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.

出版信息

J Med Internet Res. 2022 Dec 5;24(12):e41163. doi: 10.2196/41163.

Abstract

BACKGROUND

Hyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors.

OBJECTIVE

This study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG) monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with personal data.

METHODS

This retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and matched ECG data from the MIMIC-III database. A 1D convolutional neural network-based deep learning model was first developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks.

RESULTS

The results show that by acquiring data from each new patient, the personalized model can improve the accuracy of hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD 0.094).

CONCLUSIONS

By using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor one's ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests.

摘要

背景

高钾血症是一种危急情况,尤其是在重症监护病房。到目前为止,还没有准确、无创的方法可以在动态心电图监测器上识别高钾血症事件。

目的

本研究旨在通过使用个性化迁移学习方法提高动态心电图(ECG)监测器预测高钾血症的准确性;具体做法是通过训练通用模型并使用个人数据对其进行改进。

方法

本回顾性队列研究使用了来自医疗信息集市强化护理 III 版(MIMIC-III)的开源波形数据库匹配子集的数据。我们纳入了具有多次血清钾测试结果和 MIMIC-III 数据库中匹配 ECG 数据的患者。首先开发了一种基于 1D 卷积神经网络的深度学习模型,用于预测一般人群中的高钾血症。一旦模型达到了最先进的性能,就可以在主动迁移学习过程中使用它来执行患者自适应的心跳分类任务。

结果

结果表明,通过从每个新患者获取数据,个性化模型可以显著提高高钾血症检测的准确性,从平均 0.604(SD 0.211)提高到 0.980(SD 0.078),与通用模型相比。此外,接收器操作特征曲线下面积从 0.729(SD 0.240)提高到 0.945(SD 0.094)。

结论

通过使用深度迁移学习方法,我们能够使用动态心电图监测器构建用于高钾血症检测的临床标准模型。这些发现可能会扩展到应用程序,这些应用程序可以持续监测一个人的心电图,以便及早发出高钾血症警报并帮助避免不必要的血液测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8dd/9764151/95277d9b52ec/jmir_v24i12e41163_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验