Shen Tao, Li Wenhao, Zhao Yan, Wang Yang, Liu Yunqi
Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China.
Adv Mater. 2023 Feb;35(8):e2210093. doi: 10.1002/adma.202210093. Epub 2022 Dec 21.
The development of unipolar n-type semiconducting polymers with electron mobility (µ ) over 5 cm V s remains a massive challenge in organic semiconductors. Diketopyrrolopyrrole (DPP) has proven to be a successful unit for high-performance p-type and ambipolar polymers. However, DPP's moderate electron-accepting capability leads to the shallow frontier molecular orbital (FMO) levels of the resultant polymers and hence limit the µ in unipolar n-type organic transistors. Herein, this issue has been addressed by using a hybrid acceptor-modulation strategy based on DPP-containing "fluorinated triple-acceptor architecture", namely DPP-difluorobenzothiadiazole-DPP (DFB). Compared with DFB's non-fluorinated counterpart, DFB features deeper FMO levels and a shape-persistent framework. Therefore, a series of DFB-based polymers demonstrate planar backbones and lowered FMO levels by ≈0.10 to 0.25 eV versus that of the control polymer. Intriguingly, all DFB-polymers exhibit excellent unipolar n-type transistor performances. Notably, a full-locked backbone conformation and high crystallinity with crystalline coherence length of 524 Å are observed for pDFB-TF, accounting for its high µ of 5.04 cm V s , which is the highest µ value for DPP-based unipolar n-type polymers reported to date. This work demonstrates that the strategy of "fluorinated triple-acceptor architecture" opens a new path towards high-performance unipolar n-type semiconducting polymers.
开发电子迁移率(µ)超过5 cm² V⁻¹ s⁻¹的单极n型半导体聚合物仍然是有机半导体领域的一项巨大挑战。二酮吡咯并吡咯(DPP)已被证明是用于高性能p型和双极性聚合物的成功单元。然而,DPP适度的电子接受能力导致所得聚合物的前沿分子轨道(FMO)能级较浅,从而限制了单极n型有机晶体管中的µ。在此,通过使用基于含DPP的“氟化三受体结构”,即DPP - 二氟苯并噻二唑 - DPP(DFB)的混合受体调制策略解决了这个问题。与DFB的非氟化对应物相比,DFB具有更深的FMO能级和形状持久的框架。因此,一系列基于DFB的聚合物表现出平面主链,并且相对于对照聚合物,FMO能级降低了约0.10至0.25 eV。有趣的是,所有DFB聚合物都表现出优异的单极n型晶体管性能。值得注意的是,对于pDFB - TF观察到完全锁定的主链构象和高结晶度,其结晶相干长度为524 Å,这解释了其5.04 cm² V⁻¹ s⁻¹的高µ,这是迄今为止报道的基于DPP的单极n型聚合物的最高µ值。这项工作表明,“氟化三受体结构”策略为高性能单极n型半导体聚合物开辟了一条新途径。