Suppr超能文献

基于多参数MRI的深度学习与影像组学预测胃肠道间质瘤的有丝分裂指数

Deep learning and radiomics to predict the mitotic index of gastrointestinal stromal tumors based on multiparametric MRI.

作者信息

Yang Linsha, Du Dan, Zheng Tao, Liu Lanxiang, Wang Zhanqiu, Du Juan, Yi Huiling, Cui Yujie, Liu Defeng, Fang Yuan

机构信息

Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, China.

Medical Imaging Center, Chongqing Yubei District People's Hospital, Chongqing, China.

出版信息

Front Oncol. 2022 Nov 23;12:948557. doi: 10.3389/fonc.2022.948557. eCollection 2022.

Abstract

INTRODUCTION

Preoperative evaluation of the mitotic index (MI) of gastrointestinal stromal tumors (GISTs) represents the basis of individualized treatment of patients. However, the accuracy of conventional preoperative imaging methods is limited. The aim of this study was to develop a predictive model based on multiparametric MRI for preoperative MI prediction.

METHODS

A total of 112 patients who were pathologically diagnosed with GIST were enrolled in this study. The dataset was subdivided into the development ( = 81) and test ( = 31) sets based on the time of diagnosis. With the use of T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) map, a convolutional neural network (CNN)-based classifier was developed for MI prediction, which used a hybrid approach based on 2D tumor images and radiomics features from 3D tumor shape. The trained model was tested on an internal test set. Then, the hybrid model was comprehensively tested and compared with the conventional ResNet, shape radiomics classifier, and age plus diameter classifier.

RESULTS

The hybrid model showed good MI prediction ability at the image level; the area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPRC), and accuracy in the test set were 0.947 (95% confidence interval [CI]: 0.927-0.968), 0.964 (95% CI: 0.930-0.978), and 90.8 (95% CI: 88.0-93.0), respectively. With the average probabilities from multiple samples per patient, good performance was also achieved at the patient level, with AUROC, AUPRC, and accuracy of 0.930 (95% CI: 0.828-1.000), 0.941 (95% CI: 0.792-1.000), and 93.6% (95% CI: 79.3-98.2) in the test set, respectively.

DISCUSSION

The deep learning-based hybrid model demonstrated the potential to be a good tool for the operative and non-invasive prediction of MI in GIST patients.

摘要

引言

胃肠道间质瘤(GIST)有丝分裂指数(MI)的术前评估是患者个体化治疗的基础。然而,传统术前成像方法的准确性有限。本研究的目的是开发一种基于多参数磁共振成像(MRI)的预测模型,用于术前MI预测。

方法

本研究共纳入112例经病理诊断为GIST的患者。根据诊断时间将数据集分为开发集(n = 81)和测试集(n = 31)。利用T2加权成像(T2WI)和表观扩散系数(ADC)图,开发了一种基于卷积神经网络(CNN)的分类器用于MI预测,该分类器采用了基于二维肿瘤图像和三维肿瘤形状的放射组学特征的混合方法。在内部测试集上对训练好的模型进行测试。然后,对混合模型进行全面测试,并与传统的ResNet、形状放射组学分类器和年龄加直径分类器进行比较。

结果

混合模型在图像层面显示出良好的MI预测能力;受试者工作特征曲线下面积(AUROC)、精确召回率曲线下面积(AUPRC)和测试集中的准确率分别为0.947(95%置信区间[CI]:0.927 - 0.968)、0.964(95% CI:0.930 - 0.978)和90.8(95% CI:88.0 - 93.0)。根据每位患者多个样本的平均概率,在患者层面也取得了良好的性能,测试集中的AUROC、AUPRC和准确率分别为0.930(95% CI:0.828 - 1.000)、0.941(95% CI:0.792 - 1.000)和93.6%(95% CI:79.3 - 98.2)。

讨论

基于深度学习的混合模型显示出有潜力成为GIST患者MI手术和非侵入性预测的良好工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cff/9727176/ee15950da87b/fonc-12-948557-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验