文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

金属触发的化合物CDPDP通过下调炎性细胞因子,并在具有广泛的药物代谢动力学、药物相似性、药物动力学、药物代谢和毒性(ADMET)、对接和模拟研究的小鼠模型中调节氧化应激风暴,从而表现出抗关节炎行为。

Metals-triggered compound CDPDP exhibits anti-arthritic behavior by downregulating the inflammatory cytokines, and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies.

作者信息

Hassan Syed Shams Ul, Abbas Syed Qamar, Muhammad Ishaq, Wu Jia-Jia, Yan Shi-Kai, Ali Fawad, Majid Muhammad, Jin Hui-Zi, Bungau Simona

机构信息

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.

Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Pharmacol. 2022 Nov 23;13:1053744. doi: 10.3389/fphar.2022.1053744. eCollection 2022.


DOI:10.3389/fphar.2022.1053744
PMID:36506587
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9727203/
Abstract

Triggering through abiotic stress, including chemical triggers like heavy metals, is a new technique for drug discovery. In this research, the effect of heavy metal Nickel on actinobacteria SH-1327 to obtain a stress-derived compound was firstly investigated. A new compound cyclo-(D)-Pro-(D)-Phe (CDPDP) was triggered from the actinobacteria strain SH-1327 with the addition of nickel ions 1 mM. The stress compound was further evaluated for its anti-oxidant, analgesic, and anti-inflammatory activity against rheumatoid arthritis through and assays in albino mice. A remarkable anti-oxidant potential of CDPDP was recorded with the IC value of 30.06 ± 5.11 μg/ml in DPPH, IC of 18.98 ± 2.91 against NO free radicals, the IC value of 27.15 ± 3.12 against scavenging ability and IC value of 28.40 ± 3.14 μg/ml for iron chelation capacity. Downregulation of pro-inflammatory mediators (NO and MDA), suppressed levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-Iβ) and upregulation of expressions of anti-oxidant enzymes (GSH, catalase, and GST) unveiled its anti-inflammatory potential. CDPDP was analyzed in human chondrocyte cell line CHON-001 and the results demonstrated that CDPDP significantly increased cell survival, and inhibited apoptosis of IL-1β treated chondrocytes and IL-1β induced matrix degrading markers. In addition, to evaluate the mitochondrial fitness of CHON-001 cells, CDPDP significantly upregulated pgc1-α, the master regulator of mitochondrial biogenesis, indicating that CDPDP provides protective effects in CHON-001 cells. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of the CDPDP showed that CDPDP is safe in cases of hepatotoxicity, cardiotoxicity, and cytochrome inhibition. Furthermore, docking results showed good binding of CDPDP with IL-6-17.4 kcal/mol, and the simulation studies proved the stability between ligand and protein. Therefore, the findings of the current study prospect CDPDP as a potent anti-oxidant and a plausible anti-arthritic agent with a strong pharmacokinetic and pharmacological profile.

摘要

通过非生物胁迫触发,包括重金属等化学触发因素,是一种新的药物发现技术。在本研究中,首先研究了重金属镍对放线菌SH - 1327的影响,以获得一种应激衍生化合物。在添加1 mM镍离子的情况下,从放线菌菌株SH - 1327中触发了一种新的化合物环 - (D)-脯氨酸-(D)-苯丙氨酸(CDPDP)。通过对白化病小鼠的实验和分析,进一步评估了该应激化合物对类风湿性关节炎的抗氧化、镇痛和抗炎活性。在DPPH实验中,CDPDP的抗氧化潜力显著,IC值为30.06±5.11μg/ml;对NO自由基的IC值为18.98±2.91;清除能力的IC值为27.15±3.12;铁螯合能力的IC值为28.40±3.14μg/ml。促炎介质(NO和MDA)的下调、促炎细胞因子(TNF-α、IL - 6、IL - 1β)水平的抑制以及抗氧化酶(GSH、过氧化氢酶和GST)表达的上调揭示了其抗炎潜力。在人软骨细胞系CHON - 001中对CDPDP进行了分析,结果表明CDPDP显著提高了细胞存活率,并抑制了IL - 1β处理的软骨细胞的凋亡以及IL - 1β诱导的基质降解标志物。此外,为了评估CHON - 001细胞的线粒体适应性,CDPDP显著上调了线粒体生物发生的主要调节因子pgc1 - α,表明CDPDP在CHON - 001细胞中提供了保护作用。CDPDP的吸收、分布、代谢、排泄和毒性(ADMET)概况表明,CDPDP在肝毒性、心脏毒性和细胞色素抑制方面是安全的。此外,对接结果显示CDPDP与IL - 6的结合良好,结合能为-17.4 kcal/mol,模拟研究证明了配体与蛋白质之间的稳定性。因此,本研究结果表明CDPDP是一种有效的抗氧化剂和一种有潜力的抗关节炎药物,具有强大的药代动力学和药理学特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/b06b412c0887/fphar-13-1053744-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/d4acb33c6d3c/fphar-13-1053744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/1b3ada2db165/fphar-13-1053744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/cf1ac2f9db56/fphar-13-1053744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/1e981e81c89c/fphar-13-1053744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/4632cb80332a/fphar-13-1053744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/53f74c5c62ae/fphar-13-1053744-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/c7a5a6378bf7/fphar-13-1053744-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/e05b02d71ed4/fphar-13-1053744-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/e073854be667/fphar-13-1053744-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/a470e71f552b/fphar-13-1053744-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/b9e88ca082e2/fphar-13-1053744-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/afbd59e93f81/fphar-13-1053744-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/b06b412c0887/fphar-13-1053744-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/d4acb33c6d3c/fphar-13-1053744-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/1b3ada2db165/fphar-13-1053744-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/cf1ac2f9db56/fphar-13-1053744-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/1e981e81c89c/fphar-13-1053744-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/4632cb80332a/fphar-13-1053744-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/53f74c5c62ae/fphar-13-1053744-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/c7a5a6378bf7/fphar-13-1053744-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/e05b02d71ed4/fphar-13-1053744-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/e073854be667/fphar-13-1053744-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/a470e71f552b/fphar-13-1053744-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/b9e88ca082e2/fphar-13-1053744-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/afbd59e93f81/fphar-13-1053744-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b319/9727203/b06b412c0887/fphar-13-1053744-g013.jpg

相似文献

[1]
Metals-triggered compound CDPDP exhibits anti-arthritic behavior by downregulating the inflammatory cytokines, and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies.

Front Pharmacol. 2022-11-23

[2]
Stress Driven Discovery of Natural Products From Actinobacteria with Anti-Oxidant and Cytotoxic Activities Including Docking and ADMET Properties.

Int J Mol Sci. 2021-10-22

[3]
Ribes orientale: A novel therapeutic approach targeting rheumatoid arthritis with reference to pro-inflammatory cytokines, inflammatory enzymes and anti-inflammatory cytokines.

J Ethnopharmacol. 2019-3-11

[4]
Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways: A comprehensive study onin-vitro and in-vivo experimental models.

Phytomedicine. 2022-3

[5]
Anti-inflammatory and osteoprotective effects of Shi-Wei-Ru-Xiang pills on collagen-induced arthritis in rats via inhibiting MAPK and STAT3 pathways.

J Ethnopharmacol. 2023-1-10

[6]
Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways.

J Ethnopharmacol. 2022-2-10

[7]
Ichnocarpus frutescens (L.) R. Br. root derived phyto-steroids defends inflammation and algesia by pulling down the pro-inflammatory and nociceptive pain mediators: An in-vitro and in-vivo appraisal.

Steroids. 2018-11

[8]
Tanshinone I Inhibits IL-1β-Induced Apoptosis, Inflammation And Extracellular Matrix Degradation In Chondrocytes CHON-001 Cells And Attenuates Murine Osteoarthritis.

Drug Des Devel Ther. 2019-10-15

[9]
Attenuation of LPS-induced acute lung injury by continentalic acid in rodents through inhibition of inflammatory mediators correlates with increased Nrf2 protein expression.

BMC Pharmacol Toxicol. 2020-11-25

[10]
Caralluma tuberculata exhibits analgesic and anti-arthritic potential by downregulating pro-inflammatory cytokines and attenuating oxidative stress.

Inflammopharmacology. 2022-4

引用本文的文献

[1]
Associations between metal exposure and metabolic syndrome: exploring the mediating role of biological ageing among US adults.

Diabetol Metab Syndr. 2025-6-16

[2]
Unlocking marine microbial treasures: new PBP2a-targeted antibiotics elicited by metals and enhanced by RSM-driven transcriptomics and chemoinformatics.

Microb Cell Fact. 2024-11-12

[3]
Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels.

Biomedicines. 2024-6-28

[4]
Evaluation of Reichb. for antioxidant, anti-inflammatory, and antinociceptive effects with and approaches.

Front Chem. 2024-3-19

[5]
Investigation of anti-nociceptive, anti-inflammatory potential and ADMET studies of pure compounds isolated from Wall. ex Benth.

Front Pharmacol. 2024-2-13

[6]
Phytochemical characterization of and the assessment of therapeutic potential using and biological activities and studies.

Front Chem. 2023-11-8

[7]
From seeds to survival rates: investigating 's potential against ovarian cancer through network pharmacology.

Front Pharmacol. 2023-10-30

[8]
Therapeutic effects of inhibitors against breast cancer.

Front Pharmacol. 2023-4-27

[9]
Induced pluripotent stem cells as natural biofactories for exosomes carrying miR-199b-5p in the treatment of spinal cord injury.

Front Pharmacol. 2023-1-10

[10]
Ameliorative Effect of Structurally Divergent Oleanane Triterpenoid, 3-Epifriedelinol from against BPA-Induced Gonadotoxicity by Targeting PARP and NF-κB Signaling in Rats.

Molecules. 2022-12-29

本文引用的文献

[1]
Tumor necrosis factor-alpha, prostaglandin-E2 and interleukin-1β targeted anti-arthritic potential of fluvoxamine: drug repurposing.

Environ Sci Pollut Res Int. 2023-2

[2]
Pharmacological Basis of D. Don in Gastrointestinal Diseases with Focusing Effects on H/K-ATPase, Calcium Channels Inhibition and PDE Mediated Signaling: Toxicological Evaluation on Vital Organs.

Molecules. 2022-9-12

[3]
Natural Products for Chronic Diseases: A Ray of Hope.

Molecules. 2022-8-30

[4]
Efficacy of 2-Hydroxyflavanone in Rodent Models of Pain and Inflammation: Involvement of Opioidergic and GABAergic Anti-Nociceptive Mechanisms.

Molecules. 2022-8-25

[5]
Shared decision-making in the management of patients with inflammatory bowel disease.

World J Gastroenterol. 2022-7-14

[6]
Novel Isoxazole Derivative Attenuates Ethanol-Induced Gastric Mucosal Injury through Inhibition of H/K-ATPase Pump, Oxidative Stress and Inflammatory Pathways.

Molecules. 2022-8-9

[7]
Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice.

Signal Transduct Target Ther. 2022-8-1

[8]
Anti-Inflammatory, Analgesic and Antioxidant Potential of New (2,3)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and Their Corresponding Carboxylic Acids through In Vitro, In Silico and In Vivo Studies.

Molecules. 2022-6-24

[9]
YTHDF1 Negatively Regulates -Induced Inflammation in THP-1 Macrophages by Promoting SOCS3 Translation in an m6A-Dependent Manner.

Front Immunol. 2022

[10]
A Comprehensive In Silico Exploration of Pharmacological Properties, Bioactivities, Molecular Docking, and Anticancer Potential of Vieloplain F from Targeting B-Raf Kinase.

Molecules. 2022-1-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索