Suppr超能文献

characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartane-type saponins in Astragalus membranaceus

Characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartane-type saponins in Astragalus membranaceus.

机构信息

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

出版信息

Plant Biotechnol J. 2023 Apr;21(4):698-710. doi: 10.1111/pbi.13983. Epub 2023 Jan 5.

Abstract

Although plant secondary metabolites are important source of new drugs, obtaining these compounds is challenging due to their high structural diversity and low abundance. The roots of Astragalus membranaceus are a popular herbal medicine worldwide. It contains a series of cycloartane-type saponins (astragalosides) as hepatoprotective and antivirus components. However, astragalosides exhibit complex sugar substitution patterns which hindered their purification and bioactivity investigation. In this work, glycosyltransferases (GT) from A. membranaceus were studied to synthesize structurally diverse astragalosides. Three new GTs, AmGT1/5 and AmGT9, were characterized as 3-O-glycosyltransferase and 25-O-glycosyltransferase of cycloastragenol respectively. AmGT1 variants were obtained as specific 3-O-xylosyltransferases by sequence alignment, molecular modelling and site-directed mutagenesis. A combinatorial synthesis system was established using AmGT1/5/9, AmGT1 and the reported AmGT8 and AmGT8 . The system allowed the synthesis of 13 astragalosides in Astragalus root with conversion rates from 22.6% to 98.7%, covering most of the sugar-substitution patterns for astragalosides. In addition, AmGT1 exhibited remarkable sugar donor promiscuity to use 10 different donors, and was used to synthesize three novel astragalosides and ginsenosides. Glycosylation remarkably improved the hepatoprotective and SARS-CoV-2 inhibition activities for triterpenoids. This is one of the first attempts to produce a series of herbal constituents via combinatorial synthesis. The results provided new biocatalytic tools for saponin biosynthesis.

摘要

尽管植物次生代谢物是新药的重要来源,但由于其结构多样性高和丰度低,获得这些化合物具有挑战性。黄芪的根是一种在全球范围内广泛使用的草药。它含有一系列环阿尔廷型皂苷(黄芪苷)作为保肝和抗病毒成分。然而,黄芪苷表现出复杂的糖取代模式,这阻碍了它们的纯化和生物活性研究。在这项工作中,研究了黄芪中的糖基转移酶(GT),以合成结构多样的黄芪苷。三种新的 GT,AmGT1/5 和 AmGT9,分别被表征为环阿尔廷醇的 3-O-糖基转移酶和 25-O-糖基转移酶。通过序列比对、分子建模和定点突变获得了 AmGT1 变体,它们是特定的 3-O-木糖基转移酶。使用 AmGT1/5/9、AmGT1 和报道的 AmGT8 和 AmGT8 建立了组合合成系统。该系统允许在黄芪根中合成 13 种黄芪苷,转化率从 22.6%到 98.7%,涵盖了黄芪苷的大多数糖取代模式。此外,AmGT1 表现出显著的糖供体混杂性,可使用 10 种不同的供体,并用于合成三种新型黄芪苷和人参皂苷。糖基化显著提高了三萜类化合物的保肝和 SARS-CoV-2 抑制活性。这是首次尝试通过组合合成生产一系列草药成分。该结果为皂苷生物合成提供了新的生物催化工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验