Department of Computer Science, Stanford University, Stanford, CA 94305, USA,
Pac Symp Biocomput. 2023;28:61-72.
Biological networks are powerful representations for the discovery of molecular phenotypes. Fundamental to network analysis is the principle-rooted in social networks-that nodes that interact in the network tend to have similar properties. While this long-standing principle underlies powerful methods in biology that associate molecules with phenotypes on the basis of network proximity, interacting molecules are not necessarily similar, and molecules with similar properties do not necessarily interact. Here, we show that molecules are more likely to have similar phenotypes, not if they directly interact in a molecular network, but if they interact with the same molecules. We call this the mutual interactor principle and show that it holds for several kinds of molecular networks, including protein-protein interaction, genetic interaction, and signaling networks. We then develop a machine learning framework for predicting molecular phenotypes on the basis of mutual interactors. Strikingly, the framework can predict drug targets, disease proteins, and protein functions in different species, and it performs better than much more complex algorithms. The framework is robust to incomplete biological data and is capable of generalizing to phenotypes it has not seen during training. Our work represents a network-based predictive platform for phenotypic characterization of biological molecules.
生物网络是发现分子表型的有力表示形式。网络分析的基础原则——源于社交网络——是网络中相互作用的节点往往具有相似的属性。虽然这一长期存在的原则为生物学中强大的方法提供了基础,这些方法根据网络接近度将分子与表型相关联,但相互作用的分子不一定相似,具有相似性质的分子不一定相互作用。在这里,我们表明,如果分子不是直接在分子网络中相互作用,而是与相同的分子相互作用,那么它们更有可能具有相似的表型。我们称之为相互作用者原则,并表明它适用于几种分子网络,包括蛋白质-蛋白质相互作用、遗传相互作用和信号网络。然后,我们开发了一种基于相互作用者预测分子表型的机器学习框架。引人注目的是,该框架可以预测不同物种的药物靶点、疾病蛋白和蛋白质功能,并且比复杂得多的算法表现更好。该框架对不完整的生物数据具有鲁棒性,并且能够推广到训练过程中未见过的表型。我们的工作代表了一种基于网络的生物分子表型特征描述的预测平台。