E.L.Ginzton Laboratory, Stanford University, Stanford, CA, USA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nat Commun. 2022 Dec 21;13(1):7862. doi: 10.1038/s41467-022-35446-4.
The use of optical interconnects has burgeoned as a promising technology that can address the limits of data transfer for future high-performance silicon chips. Recent pushes to enhance optical communication have focused on developing wavelength-division multiplexing technology, and new dimensions of data transfer will be paramount to fulfill the ever-growing need for speed. Here we demonstrate an integrated multi-dimensional communication scheme that combines wavelength- and mode- multiplexing on a silicon photonic circuit. Using foundry-compatible photonic inverse design and spectrally flattened microcombs, we demonstrate a 1.12-Tb/s natively error-free data transmission throughout a silicon nanophotonic waveguide. Furthermore, we implement inverse-designed surface-normal couplers to enable multimode optical transmission between separate silicon chips throughout a multimode-matched fibre. All the inverse-designed devices comply with the process design rules for standard silicon photonic foundries. Our approach is inherently scalable to a multiplicative enhancement over the state of the art silicon photonic transmitters.
光互连的使用已经蓬勃发展,成为一种有前途的技术,可以解决未来高性能硅芯片的数据传输限制。最近,人们致力于开发波分复用技术,新的数据传输维度对于满足不断增长的速度需求至关重要。在这里,我们展示了一种集成的多维通信方案,该方案在硅光子电路上结合了波长和模式复用。使用可制造的光子反向设计和光谱平坦微梳,我们在硅纳米光子波导中实现了 1.12Tb/s 的无错误数据传输。此外,我们还实现了反向设计的表面法线耦合器,以在多模匹配光纤中实现不同硅芯片之间的多模光传输。所有反向设计的器件都符合标准硅光子制造厂的工艺设计规则。我们的方法在本质上可以通过对现有硅光子发射器进行乘法增强来实现扩展。