Suppr超能文献

基于无监督学习的复合网络,降低深度学习模型用于结直肠癌诊断的训练成本。

Unsupervised Learning Composite Network to Reduce Training Cost of Deep Learning Model for Colorectal Cancer Diagnosis.

机构信息

Department of Colorectal SurgeryThe Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China.

Department of RadiologyThe Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou 510655 China.

出版信息

IEEE J Transl Eng Health Med. 2022 Nov 21;11:54-59. doi: 10.1109/JTEHM.2022.3224021. eCollection 2023.

Abstract

Deep learning facilitates complex medical data analysis and is increasingly being explored in colorectal cancer diagnostics. However, the training cost of the deep learning model limits its real-world medical utility. In this study, we present a composite network that combines deep learning and unsupervised K-means clustering algorithm (RK-net) for automatic processing of medical images. RK-net was more efficient in image refinement compared with manual screening and annotation. The training of a deep learning model for colorectal cancer diagnosis was accelerated by two times with utilization of RK-net-processed images. Better performance was observed in training loss and accuracy achievement as well. RK-net could be useful to refine medical images of the ever-expanding quantity and assist in subsequent construction of the artificial intelligence model.

摘要

深度学习促进了复杂医学数据分析,并在结直肠癌诊断中得到了越来越多的探索。然而,深度学习模型的训练成本限制了其在实际医疗中的应用。在这项研究中,我们提出了一种复合网络,将深度学习和无监督 K-均值聚类算法(RK-net)相结合,用于自动处理医学图像。与手动筛选和标注相比,RK-net 更有效地对图像进行了细化。利用 RK-net 处理后的图像,加速了用于结直肠癌诊断的深度学习模型的训练。在训练损失和准确性方面也取得了更好的表现。RK-net 可用于细化不断增加的医学图像数量,并有助于后续构建人工智能模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb5/9762730/b13864e01d40/guo1-3224021.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验