Statistics Study Program, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia.
Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico.
Genes (Basel). 2022 Dec 3;13(12):2279. doi: 10.3390/genes13122279.
While genomic selection (GS) began revolutionizing plant breeding when it was proposed around 20 years ago, its practical implementation is still challenging as many factors affect its accuracy. One such factor is the choice of the statistical machine learning method. For this reason, we explore the tuning process under a multi-trait framework using the Gaussian kernel with a multi-trait Bayesian Best Linear Unbiased Predictor (GBLUP) model. We explored three methods of tuning (manual, grid search and Bayesian optimization) using 5 real datasets of breeding programs. We found that using grid search and Bayesian optimization improve between 1.9 and 6.8% the prediction accuracy regarding of using manual tuning. While the improvement in prediction accuracy in some cases can be marginal, it is very important to carry out the tuning process carefully to improve the accuracy of the GS methodology, even though this entails greater computational resources.
虽然基因组选择 (GS) 在大约 20 年前被提出时就开始颠覆植物育种,但其实际应用仍然具有挑战性,因为许多因素会影响其准确性。其中一个因素是统计机器学习方法的选择。出于这个原因,我们在多性状框架下使用具有多性状贝叶斯最佳线性无偏预测器 (GBLUP) 模型的高斯核探索了调优过程。我们使用 5 个实际的育种计划数据集探索了三种调优方法(手动、网格搜索和贝叶斯优化)。我们发现,与使用手动调优相比,使用网格搜索和贝叶斯优化可将预测准确性提高 1.9%至 6.8%。虽然在某些情况下,预测准确性的提高可能微不足道,但仔细进行调优过程对于提高 GS 方法的准确性非常重要,即使这需要更多的计算资源。