Dey Debangan, Banerjee Sudipto, Lindquist Martin A, Datta Abhirup
National Institute of Mental Health, Bethesda, 20892, MD, USA.
Department of Biostatistics, University of California Los Angeles, Los Angeles, 90095, CA, USA.
J Multivar Anal. 2025 May;207. doi: 10.1016/j.jmva.2025.105428. Epub 2025 Feb 24.
The manuscript considers multivariate functional data analysis with a known graphical model among the functional variables representing their conditional relationships (e.g., brain region-level fMRI data with a prespecified connectivity graph among brain regions). Functional Gaussian graphical models (GGM) used for analyzing multivariate functional data customarily estimate an unknown graphical model, and cannot preserve knowledge of a given graph. We propose a method for multivariate functional analysis that exactly conforms to a given inter-variable graph. We first show the equivalence between partially separable functional GGM and graphical Gaussian processes (GP), proposed recently for constructing optimal multivariate covariance functions that retain a given graphical model. The theoretical connection helps to design a new algorithm that leverages Dempster's covariance selection for obtaining the maximum likelihood estimate of the covariance function for multivariate functional data under graphical constraints. We also show that the finite term truncation of functional GGM basis expansion used in practice is equivalent to a low-rank graphical GP, which is known to oversmooth marginal distributions. To remedy this, we extend our algorithm to better preserve marginal distributions while respecting the graph and retaining computational scalability. The benefits of the proposed algorithms are illustrated using empirical experiments and a neuroimaging application.
该手稿考虑了在表示功能变量之间条件关系的已知图形模型下的多元功能数据分析(例如,具有预先指定的脑区之间连接图的脑区水平功能磁共振成像数据)。用于分析多元功能数据的功能高斯图形模型(GGM)通常估计一个未知的图形模型,并且无法保留给定图的信息。我们提出了一种用于多元功能分析的方法,该方法能精确地符合给定的变量间图。我们首先展示了部分可分离功能GGM与图形高斯过程(GP)之间的等价性,图形高斯过程是最近为构建保留给定图形模型的最优多元协方差函数而提出的。这种理论联系有助于设计一种新算法,该算法利用邓普斯特协方差选择来获得图形约束下多元功能数据协方差函数的最大似然估计。我们还表明,实际中使用的功能GGM基展开的有限项截断等同于低秩图形GP,已知其会过度平滑边缘分布。为了补救这一点,我们扩展算法以在尊重图形并保持计算可扩展性的同时更好地保留边缘分布。通过实证实验和神经成像应用说明了所提出算法的优点。