CERM─Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019Sesto Fiorentino, Italy.
Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine─CIRMMP, Via Luigi Sacconi 6, 50019Sesto Fiorentino, Italy.
J Am Chem Soc. 2023 Jan 18;145(2):1389-1399. doi: 10.1021/jacs.2c12086. Epub 2023 Jan 5.
In-cell NMR spectroscopy is a powerful approach to study protein structure and function in the native cellular environment. It provides precious insights into the folding, maturation, interactions, and ligand binding of important pharmacological targets directly in human cells. However, its widespread application is hampered by the fact that soluble globular proteins often interact with large cellular components, causing severe line broadening in conventional heteronuclear NMR experiments. F NMR can overcome this issue, as fluorine atoms incorporated in proteins can be detected by simple background-free 1D NMR spectra. Here, we show that fluorinated amino acids can be easily incorporated in proteins expressed in human cells by employing a medium switch strategy. This straightforward approach allows the incorporation of different fluorinated amino acids in the protein of interest, reaching fluorination efficiencies up to 60%, as confirmed by mass spectrometry and X-ray crystallography. The versatility of the approach is shown by performing F in-cell NMR on several proteins, including those that would otherwise be invisible by H-N in-cell NMR. We apply the approach to observe the interaction between an intracellular target, carbonic anhydrase 2, and its inhibitors, and to investigate how the formation of a complex between superoxide dismutase 1 and its chaperone CCS modulates the interaction of the chaperone subunit with the cellular environment.
细胞内 NMR 光谱学是一种研究蛋白质在天然细胞环境中结构和功能的强大方法。它为在人类细胞中直接研究重要药理学靶标的折叠、成熟、相互作用和配体结合提供了宝贵的见解。然而,其广泛应用受到限制,因为可溶性球状蛋白质通常与大的细胞成分相互作用,导致常规异核 NMR 实验中的谱线严重增宽。19F NMR 可以克服这个问题,因为在蛋白质中掺入的氟原子可以通过简单的无背景 1D NMR 光谱检测到。在这里,我们展示了通过采用介质切换策略,可以在人类细胞中表达的蛋白质中轻松掺入氟化氨基酸。这种简单的方法允许在感兴趣的蛋白质中掺入不同的氟化氨基酸,达到高达 60%的氟化效率,这通过质谱和 X 射线晶体学得到证实。该方法的多功能性通过对几种蛋白质进行 F 细胞内 NMR 来证明,包括那些用 H-N 细胞内 NMR 无法检测到的蛋白质。我们应用该方法观察细胞内靶标碳酸酐酶 2 与其抑制剂之间的相互作用,并研究超氧化物歧化酶 1 与其伴侣 CCS 形成复合物如何调节伴侣亚基与细胞环境的相互作用。