Suppr超能文献

金纳米结构的固有光学性质和新兴应用。

Intrinsic Optical Properties and Emerging Applications of Gold Nanostructures.

机构信息

Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.

Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475001, China.

出版信息

Adv Mater. 2023 Jun;35(23):e2206700. doi: 10.1002/adma.202206700. Epub 2023 Apr 4.

Abstract

The collective oscillation of free electrons at the nanoscale surface of gold nanostructures is closely modulated by tuning the size, shape/morphology, phase, composition, hybridization, assembly, and nanopatterning, along with the surroundings of the plasmonic surface located at a dielectric interface with air, liquid, and solid. This review first introduces the physical origin of the intrinsic optical properties of gold nanostructures and further summarizes stimuli-responsive changes in optical properties, metal-field-enhanced optical signals, luminescence spectral shaping, chiroptical response, and photogenerated hot carriers. The current success in the landscape of nanoscience and nanotechnology mainly originates from the abundant optical properties of gold nanostructures in the thermodynamically stable face-centered cubic (fcc) phase. It has been further extended by crystal phase engineering to prepare thermodynamically unfavorable phases (e.g., kinetically stable) and heterophases to modulate their intriguing phase-dependent optical properties. A broad range of promising applications, including but not limited to full-color displays, solar energy harvesting, photochemical reactions, optical sensing, and microscopic/biomedical imaging, have fostered parallel research on the multitude of physical effects occurring in gold nanostructures.

摘要

金纳米结构的纳米尺度表面上自由电子的集体振荡可以通过调节尺寸、形状/形态、相、组成、杂化、组装和纳米图案化以及位于与空气、液体和固体的介电界面的等离子体表面的周围环境来进行紧密调节。这篇综述首先介绍了金纳米结构固有光学性质的物理起源,进一步总结了光学性质、金属场增强光学信号、发光光谱整形、手性响应和光生热载流子的响应性变化。纳米科学和纳米技术领域的当前成功主要源于金纳米结构在热力学稳定的面心立方(fcc)相中丰富的光学性质。通过晶体相工程进一步扩展到制备热力学不利的相(例如,动力学稳定的相)和异质相,以调节它们引人入胜的与相相关的光学性质。一系列有前途的应用,包括但不限于全色显示器、太阳能收集、光化学反应、光学传感和微观/生物医学成像,促进了对金纳米结构中发生的多种物理效应的平行研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验