Suppr超能文献

使用智能手机可穿戴系统评估骨质疏松症患者(包括跌倒者和未跌倒者)的步态和姿势特征。

Assessment of gait and posture characteristics using a smartphone wearable system for persons with osteoporosis with and without falls.

机构信息

Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, 85259, USA.

School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA.

出版信息

Sci Rep. 2023 Jan 11;13(1):538. doi: 10.1038/s41598-023-27788-w.

Abstract

We used smartphone technology to differentiate the gait characteristics of older adults with osteoporosis with falls from those without falls. We assessed gait mannerism and obtained activities of daily living (ADLs) with wearable sensor systems (smartphones and inertial measurement units [IMUs]) to identify fall-risk characteristics. We recruited 49 persons with osteoporosis: 14 who had a fall within a year before recruitment and 35 without falls. IMU sensor signals were sampled at 50 Hz using a customized smartphone app (Lockhart Monitor) attached at the pelvic region. Longitudinal data was collected using MoveMonitor+ (DynaPort) IMU over three consecutive days. Given the close association between serum calcium, albumin, PTH, Vitamin D, and musculoskeletal health, we compared these markers in individuals with history of falls as compared to nonfallers. For the biochemical parameters fall group had significantly lower calcium (P = 0.01*) and albumin (P = 0.05*) and higher parathyroid hormone levels (P = 0.002**) than nonfall group. In addition, persons with falls had higher sway area (P = 0.031*), lower dynamic stability (P < 0.001***), gait velocity (P = 0.012*), and were less able to perform ADLs (P = 0.002**). Thus, persons with osteoporosis with a history of falls can be differentiated by using dynamic real-time measurements that can be easily captured by a smartphone app, thus avoiding traditional postural sway and gait measures that require individuals to be tested in a laboratory setting.

摘要

我们使用智能手机技术来区分患有骨质疏松症和跌倒的老年人与没有跌倒的老年人的步态特征。我们评估了步态特征,并通过可穿戴传感器系统(智能手机和惯性测量单元 [IMU])获得日常生活活动(ADL),以确定跌倒风险特征。我们招募了 49 名骨质疏松症患者:14 名在招募前一年内跌倒,35 名没有跌倒。使用定制的智能手机应用程序(Lockhart Monitor)将 IMU 传感器信号以 50 Hz 的频率采样到骨盆区域。使用 MoveMonitor+(DynaPort)IMU 在连续三天内收集纵向数据。鉴于血清钙、白蛋白、PTH、维生素 D 与肌肉骨骼健康之间的密切关联,我们比较了有跌倒史的个体与无跌倒史的个体的这些标志物。对于生化参数,跌倒组的钙(P=0.01*)和白蛋白(P=0.05*)显著降低,甲状旁腺激素水平(P=0.002**)显著升高。此外,跌倒组的摆动面积更大(P=0.031*),动态稳定性更低(P<0.001***),步态速度更慢(P=0.012*),并且更难以进行 ADL(P=0.002**)。因此,可以通过使用智能手机应用程序轻松捕获的动态实时测量来区分患有骨质疏松症和跌倒史的人,从而避免需要在实验室环境中进行测试的传统姿势摆动和步态测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7eb/9834330/86d236d44d46/41598_2023_27788_Fig1_HTML.jpg

相似文献

2
Assessing fall risk in osteoporosis patients: a comparative study of age-matched fallers and nonfallers.
Front Digit Health. 2024 Jul 10;6:1387193. doi: 10.3389/fdgth.2024.1387193. eCollection 2024.
5
Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review.
Medicina (Kaunas). 2021 Oct 22;57(11):1145. doi: 10.3390/medicina57111145.
7
Mini-Logger- A Wearable Inertial Measurement Unit (IMU) for Postural Sway Analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4600-4603. doi: 10.1109/EMBC44109.2020.9175167.
10
Prediction of fall risk among community-dwelling older adults using a wearable system.
Sci Rep. 2021 Oct 25;11(1):20976. doi: 10.1038/s41598-021-00458-5.

引用本文的文献

2
Gait-Based AI Models for Detecting Sarcopenia and Cognitive Decline Using Sensor Fusion.
Diagnostics (Basel). 2024 Dec 22;14(24):2886. doi: 10.3390/diagnostics14242886.
3
Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review.
Geriatrics (Basel). 2024 Jul 18;9(4):95. doi: 10.3390/geriatrics9040095.
4
Assessing fall risk in osteoporosis patients: a comparative study of age-matched fallers and nonfallers.
Front Digit Health. 2024 Jul 10;6:1387193. doi: 10.3389/fdgth.2024.1387193. eCollection 2024.
5
Estimating the mechanical cost of transport in human walking with a simple kinematic data-driven mechanical model.
PLoS One. 2024 Apr 16;19(4):e0301706. doi: 10.1371/journal.pone.0301706. eCollection 2024.
7
Correlation enhanced distribution adaptation for prediction of fall risk.
Sci Rep. 2024 Feb 12;14(1):3477. doi: 10.1038/s41598-024-54053-5.

本文引用的文献

1
Effects of Rucksack Military Accessory on Gait Dynamic Stability.
Int J Progn Health Manag. 2021;12(4). doi: 10.36001/ijphm.2021.v12i4.2778. Epub 2021 Aug 24.
3
Loss of Ambulatory Level and Activities of Daily Living at 1 Year Following Hip Fracture: Can We Identify Patients at Risk?
Geriatr Orthop Surg Rehabil. 2021 Mar 31;12:21514593211002158. doi: 10.1177/21514593211002158. eCollection 2021.
7
Low muscle mass is associated with osteoporosis: A nationwide population-based study.
Maturitas. 2020 Mar;133:54-59. doi: 10.1016/j.maturitas.2020.01.003. Epub 2020 Jan 8.
8
Mortality From Falls Among US Adults Aged 75 Years or Older, 2000-2016.
JAMA. 2019 Jun 4;321(21):2131-2133. doi: 10.1001/jama.2019.4185.
9
Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults .
Sensors (Basel). 2018 May 24;18(6):1692. doi: 10.3390/s18061692.
10
Medical Costs of Fatal and Nonfatal Falls in Older Adults.
J Am Geriatr Soc. 2018 Apr;66(4):693-698. doi: 10.1111/jgs.15304. Epub 2018 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验