Suppr超能文献

对存在噪声的非线性梯度场的弥散磁共振成像的影响进行映射。

Mapping the impact of nonlinear gradient fields with noise on diffusion MRI.

机构信息

Department of Computer Science, Vanderbilt University, Nashville, TN, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

Magn Reson Imaging. 2023 May;98:124-131. doi: 10.1016/j.mri.2023.01.004. Epub 2023 Jan 9.

Abstract

In diffusion MRI, gradient nonlinearities cause spatial variations in the magnitude and direction of diffusion gradients. Studies have shown artifacts from these distortions can results in biased diffusion tensor information and tractography. Here, we investigate the impact of gradient nonlinearity correction in the presence of noise. We introduced empirically derived gradient nonlinear fields at different signal-to-noise ratio (SNR) levels in two experiments: tensor field simulation and simulation of the brain. For each experiment, this work compares two techniques empirically: voxel-wise gradient table correction and approximate correction by scaling the signal directly. The impact was assessed through diffusion metrics including mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and principal eigen vector (V1). The study shows (1) the correction of gradient nonlinearities will not lead to substantively incorrect estimation of diffusion metrics in a linear system, (2) gradient nonlinearity correction does not interact adversely with noise, (3) nonlinearity correction suppresses the impact of nonlinearities in typical SNR data, (4) for SNR below 30, the performance of both the gradient nonlinearity correction techniques were similar, and (5) larger impacts are seen in regions where the gradient nonlinearities are distinct. Thus, this study suggests that there were greater beneficial effects than adverse effects due to the correction of nonlinearities. Additionally, correction of nonlinearities is recommended when region of interests are in areas with pronounced nonlinearities.

摘要

在扩散 MRI 中,梯度非线性会导致扩散梯度的幅度和方向发生空间变化。研究表明,这些扭曲的伪影会导致扩散张量信息和束流追踪出现偏差。在这里,我们研究了存在噪声时梯度非线性校正的影响。我们在两个实验中引入了不同信噪比 (SNR) 水平下经验导出的梯度非线性场:张量场模拟和大脑模拟。对于每个实验,这项工作都通过扩散指标(包括平均扩散系数 (MD)、各向异性分数 (FA)、轴向扩散系数 (AD)、径向扩散系数 (RD) 和主特征向量 (V1))对两种技术进行了经验比较:体素级别的梯度表校正和直接对信号进行缩放的近似校正。研究结果表明:(1)在线性系统中,校正梯度非线性不会导致扩散指标的实质性错误估计;(2)梯度非线性校正不会与噪声产生不利相互作用;(3)非线性校正抑制了典型 SNR 数据中非线性的影响;(4)在 SNR 低于 30 的情况下,两种梯度非线性校正技术的性能相似;(5)在梯度非线性明显的区域,影响更大。因此,本研究表明,由于非线性的校正,有益的影响大于不利的影响。此外,当感兴趣区域位于非线性明显的区域时,建议校正非线性。

相似文献

1
Mapping the impact of nonlinear gradient fields with noise on diffusion MRI.
Magn Reson Imaging. 2023 May;98:124-131. doi: 10.1016/j.mri.2023.01.004. Epub 2023 Jan 9.
2
Mapping the Impact of Approximate Gradient Nonlinearity Fields Correction on Tractography.
Proc SPIE Int Soc Opt Eng. 2023 Feb;12464. doi: 10.1117/12.2653884. Epub 2023 Apr 3.
3
The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies.
Neuroimage. 2020 Jan 15;205:116127. doi: 10.1016/j.neuroimage.2019.116127. Epub 2019 Aug 30.
4
Efficient approximate signal reconstruction for correction of gradient nonlinearities in diffusion-weighted imaging.
Magn Reson Imaging. 2023 Oct;102:20-25. doi: 10.1016/j.mri.2023.03.014. Epub 2023 Mar 23.
5
Nonlinear Gradient Field Estimation in Diffusion MRI Tensor Simulation.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3005364. Epub 2024 Apr 2.
7
Mapping the Impact of Non-Linear Gradient Fields on Diffusion MRI Tensor Estimation.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2611900. Epub 2022 Apr 4.
9
Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI.
Magn Reson Imaging. 2021 Feb;76:69-78. doi: 10.1016/j.mri.2020.11.005. Epub 2020 Nov 19.

引用本文的文献

1
Nonlinear Gradient Field Estimation in Diffusion MRI Tensor Simulation.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12925. doi: 10.1117/12.3005364. Epub 2024 Apr 2.
2
Use of nonlinear pulsed magnetic fields for spatial encoding in magnetic resonance imaging.
Sci Rep. 2024 Mar 29;14(1):7521. doi: 10.1038/s41598-024-58229-x.

本文引用的文献

1
Mapping the Impact of Non-Linear Gradient Fields on Diffusion MRI Tensor Estimation.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2611900. Epub 2022 Apr 4.
2
Design of a high-performance non-linear gradient coil for diffusion weighted MRI of the breast.
J Magn Reson. 2021 Oct;331:107052. doi: 10.1016/j.jmr.2021.107052. Epub 2021 Aug 14.
3
Mapping gradient nonlinearity and miscalibration using diffusion-weighted MR images of a uniform isotropic phantom.
Magn Reson Med. 2021 Dec;86(6):3259-3273. doi: 10.1002/mrm.28890. Epub 2021 Aug 4.
4
MASiVar: Multisite, multiscanner, and multisubject acquisitions for studying variability in diffusion weighted MRI.
Magn Reson Med. 2021 Dec;86(6):3304-3320. doi: 10.1002/mrm.28926. Epub 2021 Jul 16.
5
Diffusion Magnetic Resonance Imaging-Based Biomarkers for Neurodegenerative Diseases.
Int J Mol Sci. 2021 May 14;22(10):5216. doi: 10.3390/ijms22105216.
7
Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI.
Magn Reson Imaging. 2021 Feb;76:69-78. doi: 10.1016/j.mri.2020.11.005. Epub 2020 Nov 19.
10
Increased sensitivity and signal-to-noise ratio in diffusion-weighted MRI using multi-echo acquisitions.
Neuroimage. 2020 Nov 1;221:117172. doi: 10.1016/j.neuroimage.2020.117172. Epub 2020 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验