Department of Civil Engineering, NIT Rourkela, Rourkela (Odisha), India.
Department of Agricultural Engineering, Centurion University of Technology and Management, R.Sitapur, Odisha, India.
Environ Monit Assess. 2023 Jan 12;195(2):291. doi: 10.1007/s10661-022-10844-9.
In this article, the maximum and minimum daily temperature data for Indian cities were tested, together with the predicted diurnal temperature range (DTR) for monthly time horizons. RClimDex, a user interface for extreme computing indices, was used to advance the estimation because it allowed for statistical analysis and comparison of climatological elements such time series, means, extremes, and trends. During these 69 years, a more erratic DTR trend was seen in the research area. This study investigates the suitability of three deep neural networks for one-step-ahead DTR time series (DTRTS) forecasting, including recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and auto-regressive integrated moving average exogenous (ARIMAX). To evaluate the effectiveness of models in the testing set, six statistical error indicators, including root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (R), percent bias (PBIAS), modified index of agreement (md), and relative index of agreement (rd), were chosen. The Wilson score approach was used to do a quantitative uncertainty analysis on the prediction error to forecast the outcome DTR. The findings show that the LSTM outperforms the other models in terms of its capacity to forget, remember, and update information. It is more accurate on datasets with longer sequences and displays noticeably more volatility throughout its gradient descent. The results of a sensitivity analysis on the LSTM model, which used RMSE values as an output and took into account different look-back periods, showed that the amount of history used to fit a time series forecast model had a direct impact on the model's performance. As a result, this model can be applied as a fresh, trustworthy deep learning method for DTRTS forecasting.
本文对印度城市的最高和最低日温度数据进行了测试,同时预测了月时间尺度的日较差(DTR)。RClimDex 是一个极端计算指数的用户界面,用于推进估计,因为它允许对气候要素进行统计分析和比较,例如时间序列、平均值、极值和趋势。在这 69 年中,研究区域的 DTR 趋势更加不稳定。本研究探讨了三种深度神经网络在一步 ahead DTR 时间序列(DTRTS)预测中的适用性,包括递归神经网络(RNN)、长短期记忆(LSTM)、门控循环单元(GRU)和自回归综合移动平均外生(ARIMAX)。为了在测试集中评估模型的有效性,选择了六个统计误差指标,包括均方根误差(RMSE)、平均绝对误差(MAE)、相关系数(R)、百分偏差(PBIAS)、修正一致指数(md)和相对一致指数(rd)。采用威尔逊得分法对预测误差进行定量不确定性分析,以预测 DTR 的结果。研究结果表明,LSTM 在遗忘、记忆和更新信息的能力方面优于其他模型。在具有较长序列的数据集上,它更准确,并且在其梯度下降过程中表现出明显更大的波动性。对 LSTM 模型进行了敏感性分析,该模型将 RMSE 值作为输出,并考虑了不同的回溯期,结果表明,用于拟合时间序列预测模型的历史量直接影响模型的性能。因此,该模型可以作为一种新颖、可靠的深度学习方法,应用于 DTRTS 预测。