Suppr超能文献

高通量精准 MRI 评估与集成堆叠式集成深度学习相结合,可以提高前列腺癌 Gleason 分级的术前预测。

High-throughput precision MRI assessment with integrated stack-ensemble deep learning can enhance the preoperative prediction of prostate cancer Gleason grade.

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, 188N, Shizi Road, 215006, Suzhou, Jiangsu, China.

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300N, Guangzhou Road, 210029, Nanjing, Jiangsu, China.

出版信息

Br J Cancer. 2023 Mar;128(7):1267-1277. doi: 10.1038/s41416-022-02134-5. Epub 2023 Jan 17.

Abstract

BACKGROUND

To develop and test a Prostate Imaging Stratification Risk (PRISK) tool for precisely assessing the International Society of Urological Pathology Gleason grade (ISUP-GG) of prostate cancer (PCa).

METHODS

This study included 1442 patients with prostate biopsy from two centres (training, n = 672; internal test, n = 231 and external test, n = 539). PRISK is designed to classify ISUP-GG 0 (benign), ISUP-GG 1, ISUP-GG 2, ISUP-GG 3 and ISUP GG 4/5. Clinical indicators and high-throughput MRI features of PCa were integrated and modelled with hybrid stacked-ensemble learning algorithms.

RESULTS

PRISK achieved a macro area-under-curve of 0.783, 0.798 and 0.762 for the classification of ISUP-GGs in training, internal and external test data. Permitting error ±1 in grading ISUP-GGs, the overall accuracy of PRISK is nearly comparable to invasive biopsy (train: 85.1% vs 88.7%; internal test: 85.1% vs 90.4%; external test: 90.4% vs 94.2%). PSA ≥ 20 ng/ml (odds ratio [OR], 1.58; p = 0.001) and PRISK ≥ GG 3 (OR, 1.45; p = 0.005) were two independent predictors of biochemical recurrence (BCR)-free survival, with a C-index of 0.76 (95% CI, 0.73-0.79) for BCR-free survival prediction.

CONCLUSIONS

PRISK might offer a potential alternative to non-invasively assess ISUP-GG of PCa.

摘要

背景

为了精确评估前列腺癌的国际泌尿病理学会格里森分级(ISUP-GG),开发并测试一种前列腺成像分层风险(PRISK)工具。

方法

本研究纳入了来自两个中心的 1442 例前列腺活检患者(训练组 n=672,内部测试组 n=231,外部测试组 n=539)。PRISK 旨在对 ISUP-GG 0(良性)、ISUP-GG 1、ISUP-GG 2、ISUP-GG 3 和 ISUP-GG 4/5 进行分类。整合了临床指标和前列腺癌高通量 MRI 特征,并采用混合堆叠集成学习算法对其进行建模。

结果

PRISK 在训练、内部和外部测试数据中对 ISUP-GG 分类的宏曲线下面积分别为 0.783、0.798 和 0.762。在允许分级 ISUP-GG 误差±1 的情况下,PRISK 的总体准确性与侵入性活检相当(训练组:85.1%比 88.7%;内部测试组:85.1%比 90.4%;外部测试组:90.4%比 94.2%)。PSA≥20ng/ml(比值比[OR],1.58;p=0.001)和 PRISK≥GG 3(OR,1.45;p=0.005)是生化无复发生存的两个独立预测因素,用于预测生化无复发生存的 C 指数为 0.76(95%CI,0.73-0.79)。

结论

PRISK 可能为非侵入性评估前列腺癌的 ISUP-GG 提供一种潜在的替代方法。

相似文献

引用本文的文献

4
An overview of utilizing artificial intelligence in localized prostate cancer imaging.局部前列腺癌成像中人工智能应用概述。
Expert Rev Med Devices. 2025 Apr;22(4):293-310. doi: 10.1080/17434440.2025.2477601. Epub 2025 Mar 19.

本文引用的文献

2
Cancer statistics, 2022.癌症统计数据,2022 年。
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验