Suppr超能文献

采用集成方法提高皮肤癌诊断准确性。

Boosting skin cancer diagnosis accuracy with ensemble approach.

作者信息

Natha Priya, Tera Sivarama Prasad, Chinthaginjala Ravikumar, Rab Safia Obaidur, Narasimhulu C Venkata, Kim Tae Hoon

机构信息

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.

Department of Electronics and Electrical Engineering, Indian Institute of Technology, Guwahati, Assam, 781039, India.

出版信息

Sci Rep. 2025 Jan 8;15(1):1290. doi: 10.1038/s41598-024-84864-5.

Abstract

Skin cancer is common and deadly, hence a correct diagnosis at an early age is essential. Effective therapy depends on precise classification of the several skin cancer forms, each with special traits. Because dermoscopy and other sophisticated imaging methods produce detailed lesion images, early detection has been enhanced. It's still difficult to analyze the images to differentiate benign from malignant tumors, though. Better predictive modeling methods are needed since the diagnostic procedures used now frequently produce inaccurate and inconsistent results. In dermatology, Machine learning (ML) models are becoming essential for the automatic detection and classification of skin cancer lesions from image data. With the ensemble model, which mix several ML approaches to take use of their advantages and lessen their disadvantages, this work seeks to improve skin cancer predictions. We introduce a new method, the Max Voting method, for optimization of skin cancer classification. On the HAM10000 and ISIC 2018 datasets, we trained and assessed three distinct ML models: Random Forest (RF), Multi-layer Perceptron Neural Network (MLPN), and Support Vector Machine (SVM). Overall performance was increased by the combined predictions made with the Max Voting technique. Moreover, feature vectors that were optimally produced from image data by a Genetic Algorithm (GA) were given to the ML models. We demonstrate that the Max Voting method greatly improves predictive performance, reaching an accuracy of 94.70% and producing the best results for F1-measure, recall, and precision. The most dependable and robust approach turned out to be Max Voting, which combines the benefits of numerous pre-trained ML models to provide a new and efficient method for classifying skin cancer lesions.

摘要

皮肤癌常见且致命,因此早期正确诊断至关重要。有效的治疗取决于对几种皮肤癌类型的精确分类,每种类型都有其特殊特征。由于皮肤镜检查和其他先进的成像方法能生成详细的病变图像,早期检测得到了加强。然而,分析这些图像以区分良性和恶性肿瘤仍然很困难。由于目前使用的诊断程序经常产生不准确和不一致的结果,因此需要更好的预测建模方法。在皮肤病学中,机器学习(ML)模型对于从图像数据中自动检测和分类皮肤癌病变变得至关重要。这项工作旨在利用集成模型,将几种机器学习方法结合起来,发挥其优势并减少其劣势,以改进皮肤癌预测。我们引入了一种新方法——最大投票法,用于优化皮肤癌分类。在HAM10000和ISIC 2018数据集上,我们训练并评估了三种不同的机器学习模型:随机森林(RF)、多层感知器神经网络(MLPN)和支持向量机(SVM)。通过最大投票技术进行的联合预测提高了整体性能。此外,通过遗传算法(GA)从图像数据中优化生成的特征向量被提供给机器学习模型。我们证明,最大投票法极大地提高了预测性能,准确率达到94.70%,在F1分数、召回率和精确率方面产生了最佳结果。事实证明,最可靠、最稳健的方法是最大投票法,它结合了众多预训练机器学习模型的优势,为皮肤癌病变分类提供了一种新的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee32/11711234/03775800e496/41598_2024_84864_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验