Suppr超能文献

空间选择性刺激猪迷走神经以调节目标效应与副作用。

Spatially selective stimulation of the pig vagus nerve to modulate target effect versus side effect.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States of America.

Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, United States of America.

出版信息

J Neural Eng. 2023 Feb 22;20(1). doi: 10.1088/1741-2552/acb3fd.

Abstract

Electrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses. However, it remains unclear if placement can alter the balance between intended effect and limiting side effect. We used an FDA investigational device exemption approved six-contact epineural cuff to deliver VNS in pigs and quantified how epineural electrode location impacts on- and off-target VNS activation. Detailed post-mortem histology was conducted to understand how the underlying neuroanatomy impacts observed functional responses. Here we report the discovery and characterization of clear neuroanatomy-dependent differences in threshold and saturation for responses related to both effect (change in heart rate) and side effect (neck muscle contractions). The histological and electrophysiological data were used to develop and validate subject-specific computation models of VNS, creating a well-grounded quantitative framework to optimize electrode location-specific activation of nerve fibers governing intended effect versus unwanted side effect.

摘要

使用植入式电极刺激颈部迷走神经(VNS)已获得美国食品和药物管理局(FDA)批准,可用于治疗耐药性癫痫、耐药性抑郁症,最近还可用于慢性缺血性中风康复。然而,VNS 受到严重限制,因为非特异性刺激会激活迷走神经内的运动神经纤维,从而导致附近颈部肌肉受到不必要的刺激。先前的研究表明,小的神经外膜电极的精确放置可以改变 VNS 的治疗效果,例如心脏反应。然而,目前尚不清楚放置位置是否可以改变预期效果和限制副作用之间的平衡。我们使用经美国食品和药物管理局(FDA)批准的具有六个接触点的神经外膜袖套设备在猪中进行 VNS 治疗,并量化了神经外膜电极位置如何影响目标内和目标外的 VNS 激活。我们进行了详细的死后组织学检查,以了解潜在的神经解剖结构如何影响观察到的功能反应。在这里,我们报告了一种明确的神经解剖依赖性差异的发现和特征,这种差异与效应(心率变化)和副作用(颈部肌肉收缩)相关的反应的阈值和饱和度有关。将组织学和电生理学数据用于开发和验证 VNS 的特定于个体的计算模型,创建了一个合理的定量框架,以优化控制预期效果和不必要副作用的神经纤维的电极位置特异性激活。

相似文献

2
Vagus nerve stimulation using an endovascular electrode array.
J Neural Eng. 2023 Jul 14;20(4). doi: 10.1088/1741-2552/acdb9b.
3
4
Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control.
J Physiol. 2017 Nov 15;595(22):6887-6903. doi: 10.1113/JP274678. Epub 2017 Sep 30.
5
Parametric characterization of the rat Hering-Breuer reflex evoked with implanted and non-invasive vagus nerve stimulation.
Exp Neurol. 2020 May;327:113220. doi: 10.1016/j.expneurol.2020.113220. Epub 2020 Feb 3.
6
Visualization of Pig Vagus Nerve "Vagotopy" Using Ultrasound.
Front Neurosci. 2021 Nov 25;15:676680. doi: 10.3389/fnins.2021.676680. eCollection 2021.
7
Hydrogel-based electrodes for selective cervical vagus nerve stimulation.
J Neural Eng. 2021 Apr 20;18(5). doi: 10.1088/1741-2552/abf398.
8
Repeated assessment of larynx compound muscle action potentials using a self-sizing cuff electrode around the vagus nerve in experimental rats.
J Neurosci Methods. 2011 Jun 15;198(2):287-93. doi: 10.1016/j.jneumeth.2011.04.007. Epub 2011 Apr 12.
10
Selective stimulation of the ferret abdominal vagus nerve with multi-contact nerve cuff electrodes.
Sci Rep. 2021 Jun 21;11(1):12925. doi: 10.1038/s41598-021-91900-1.

引用本文的文献

1
Evaluation of gold helical microwire structure electrode for long-term rodent nerve stimulation.
J Neural Eng. 2025 Jun 18;22(3):036042. doi: 10.1088/1741-2552/ade18a.
2
Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species.
Bioelectron Med. 2025 May 16;11(1):11. doi: 10.1186/s42234-025-00174-9.
4
Phosphotungstic Acid Staining to Visualize the Vagus Nerve Perineurium Using Micro-CT.
J Neuroimaging. 2025 Mar-Apr;35(2):e70040. doi: 10.1111/jon.70040.
6
Recent advances in facilitating the translation of bioelectronic medicine therapies.
Curr Opin Biomed Eng. 2025 Mar;33. doi: 10.1016/j.cobme.2024.100575. Epub 2024 Dec 20.
7
Practical Considerations for the rapid titration of VNS.
Epilepsy Behav Rep. 2024 Dec 13;29:100734. doi: 10.1016/j.ebr.2024.100734. eCollection 2025 Mar.
8
Computational modeling of autonomic nerve stimulation: Vagus et al.
Curr Opin Biomed Eng. 2024 Dec;32. doi: 10.1016/j.cobme.2024.100557. Epub 2024 Aug 24.
9
Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications.
Front Bioeng Biotechnol. 2024 Nov 6;12:1476447. doi: 10.3389/fbioe.2024.1476447. eCollection 2024.
10
Highly efficient modeling and optimization of neural fiber responses to electrical stimulation.
Nat Commun. 2024 Aug 31;15(1):7597. doi: 10.1038/s41467-024-51709-8.

本文引用的文献

2
Mapping the functional anatomy and topography of the cardiac autonomic innervation for selective cardiac neuromodulation using MicroCT.
Front Cell Dev Biol. 2022 Sep 12;10:968870. doi: 10.3389/fcell.2022.968870. eCollection 2022.
4
Selective stimulation of the ferret abdominal vagus nerve with multi-contact nerve cuff electrodes.
Sci Rep. 2021 Jun 21;11(1):12925. doi: 10.1038/s41598-021-91900-1.
5
Selective Neuromodulation of the Vagus Nerve.
Front Neurosci. 2021 May 24;15:685872. doi: 10.3389/fnins.2021.685872. eCollection 2021.
7
Model-based geometrical optimisation and in vivo validation of a spatially selective multielectrode cuff array for vagus nerve neuromodulation.
J Neurosci Methods. 2021 Mar 15;352:109079. doi: 10.1016/j.jneumeth.2021.109079. Epub 2021 Jan 28.
8
Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat.
Front Neurosci. 2020 Nov 4;14:601479. doi: 10.3389/fnins.2020.601479. eCollection 2020.
9
Quantitative estimation of nerve fiber engagement by vagus nerve stimulation using physiological markers.
Brain Stimul. 2020 Nov-Dec;13(6):1617-1630. doi: 10.1016/j.brs.2020.09.002. Epub 2020 Sep 18.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验