School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
Department of Chemistry, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2111790118.
Electrolyte-gated transistors (EGTs) hold great promise for next-generation printed logic circuitry, biocompatible integrated sensors, and neuromorphic devices. However, EGT-based complementary circuits with high voltage gain and ultralow driving voltage (<0.5 V) are currently unrealized, because achieving balanced electrical output for both the p- and n-type EGT components has not been possible with current materials. Here we report high-performance EGT complementary circuits containing p-type organic electrochemical transistors (OECTs) fabricated with an ion-permeable organic semiconducting polymer (DPP-g2T) and an n-type electrical double-layer transistor (EDLT) fabricated with an ion-impermeable inorganic indium-gallium-zinc oxide (IGZO) semiconductor. Adjusting the IGZO composition enables tunable EDLT output which, for In:Ga:Zn = 10:1:1 at%, balances that of the DPP-g2T OECT. The resulting hybrid electrolyte-gated inverter (HCIN) achieves ultrahigh voltage gains (>110) under a supply voltage of only 0.7 V. Furthermore, NAND and NOR logic circuits on both rigid and flexible substrates are realized, enabling not only excellent logic response with driving voltages as low as 0.2 V but also impressive mechanical flexibility down to 1-mm bending radii. Finally, the HCIN was applied in electrooculographic (EOG) signal monitoring for recording eye movement, which is critical for the development of wearable medical sensors and also interfaces for human-computer interaction; the high voltage amplification of the present HCIN enables EOG signal amplification and monitoring in which a small ∼1.5 mV signal is amplified to ∼30 mV.
电解质门控晶体管(EGTs)在下一代印刷逻辑电路、生物兼容集成传感器和神经形态器件方面具有巨大的应用潜力。然而,目前尚未实现具有高电压增益和超低驱动电压(<0.5 V)的基于 EGT 的互补电路,因为当前材料无法实现 p 型和 n 型 EGT 组件的平衡电输出。在这里,我们报告了高性能的 EGT 互补电路,其中包含使用离子可渗透有机半导体聚合物(DPP-g2T)制造的 p 型有机电化学晶体管(OECT)和使用离子不可渗透的无机铟镓锌氧化物(IGZO)半导体制造的 n 型电双层晶体管(EDLT)。调整 IGZO 组成可实现可调谐的 EDLT 输出,在 In:Ga:Zn = 10:1:1 的比例下,与 DPP-g2T OECT 平衡。所得的混合电解质门控逆变器(HCIN)在仅 0.7 V 的电源电压下实现超高电压增益(>110)。此外,在刚性和柔性衬底上实现了 NAND 和 NOR 逻辑电路,不仅可以实现低至 0.2 V 的驱动电压的优异逻辑响应,而且还具有令人印象深刻的机械柔韧性,可达到 1-mm 的弯曲半径。最后,HCIN 应用于眼动电图(EOG)信号监测中,用于记录眼球运动,这对于可穿戴医疗传感器的发展以及人机交互界面至关重要;本 HCIN 的高压放大功能可实现 EOG 信号放大和监测,其中将小的约 1.5 mV 信号放大到约 30 mV。