Suppr超能文献

通过混合有机-无机电解质门控晶体管在亚 0.5 V 下工作的灵活互补电路。

Flexible complementary circuits operating at sub-0.5 V via hybrid organic-inorganic electrolyte-gated transistors.

机构信息

School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.

Department of Chemistry, Northwestern University, Evanston, IL 60208.

出版信息

Proc Natl Acad Sci U S A. 2021 Nov 2;118(44). doi: 10.1073/pnas.2111790118.

Abstract

Electrolyte-gated transistors (EGTs) hold great promise for next-generation printed logic circuitry, biocompatible integrated sensors, and neuromorphic devices. However, EGT-based complementary circuits with high voltage gain and ultralow driving voltage (<0.5 V) are currently unrealized, because achieving balanced electrical output for both the p- and n-type EGT components has not been possible with current materials. Here we report high-performance EGT complementary circuits containing p-type organic electrochemical transistors (OECTs) fabricated with an ion-permeable organic semiconducting polymer (DPP-g2T) and an n-type electrical double-layer transistor (EDLT) fabricated with an ion-impermeable inorganic indium-gallium-zinc oxide (IGZO) semiconductor. Adjusting the IGZO composition enables tunable EDLT output which, for In:Ga:Zn = 10:1:1 at%, balances that of the DPP-g2T OECT. The resulting hybrid electrolyte-gated inverter (HCIN) achieves ultrahigh voltage gains (>110) under a supply voltage of only 0.7 V. Furthermore, NAND and NOR logic circuits on both rigid and flexible substrates are realized, enabling not only excellent logic response with driving voltages as low as 0.2 V but also impressive mechanical flexibility down to 1-mm bending radii. Finally, the HCIN was applied in electrooculographic (EOG) signal monitoring for recording eye movement, which is critical for the development of wearable medical sensors and also interfaces for human-computer interaction; the high voltage amplification of the present HCIN enables EOG signal amplification and monitoring in which a small ∼1.5 mV signal is amplified to ∼30 mV.

摘要

电解质门控晶体管(EGTs)在下一代印刷逻辑电路、生物兼容集成传感器和神经形态器件方面具有巨大的应用潜力。然而,目前尚未实现具有高电压增益和超低驱动电压(<0.5 V)的基于 EGT 的互补电路,因为当前材料无法实现 p 型和 n 型 EGT 组件的平衡电输出。在这里,我们报告了高性能的 EGT 互补电路,其中包含使用离子可渗透有机半导体聚合物(DPP-g2T)制造的 p 型有机电化学晶体管(OECT)和使用离子不可渗透的无机铟镓锌氧化物(IGZO)半导体制造的 n 型电双层晶体管(EDLT)。调整 IGZO 组成可实现可调谐的 EDLT 输出,在 In:Ga:Zn = 10:1:1 的比例下,与 DPP-g2T OECT 平衡。所得的混合电解质门控逆变器(HCIN)在仅 0.7 V 的电源电压下实现超高电压增益(>110)。此外,在刚性和柔性衬底上实现了 NAND 和 NOR 逻辑电路,不仅可以实现低至 0.2 V 的驱动电压的优异逻辑响应,而且还具有令人印象深刻的机械柔韧性,可达到 1-mm 的弯曲半径。最后,HCIN 应用于眼动电图(EOG)信号监测中,用于记录眼球运动,这对于可穿戴医疗传感器的发展以及人机交互界面至关重要;本 HCIN 的高压放大功能可实现 EOG 信号放大和监测,其中将小的约 1.5 mV 信号放大到约 30 mV。

相似文献

4
Vertical organic electrochemical transistors for complementary circuits.垂直型有机电化学晶体管用于互补电路。
Nature. 2023 Jan;613(7944):496-502. doi: 10.1038/s41586-022-05592-2. Epub 2023 Jan 18.
10
Electrolyte-gated transistors for organic and printed electronics.用于有机和印刷电子的电解质门控晶体管。
Adv Mater. 2013 Apr 4;25(13):1822-46. doi: 10.1002/adma.201202790. Epub 2012 Dec 2.

引用本文的文献

5
Organic Electrochemical Transistors for Biomarker Detections.用于生物标志物检测的有机电化学晶体管。
Adv Sci (Weinh). 2024 Jul;11(27):e2305347. doi: 10.1002/advs.202305347. Epub 2024 Jan 23.
7
Technology Roadmap for Flexible Sensors.柔性传感器技术路线图
ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.

本文引用的文献

8
A New Frontier of Printed Electronics: Flexible Hybrid Electronics.印刷电子学的新前沿:柔性混合电子学。
Adv Mater. 2020 Apr;32(15):e1905279. doi: 10.1002/adma.201905279. Epub 2019 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验