Wang Yongji, Deng Wei, Shi Xinmin, Ren Xiaobin, Li Bingbing, Li Yuan, Jie Jiansheng, Zhang Xiujuan, Zhang Xiaohong
Institute of Functional Nano & Soft Materials (FUNSOM), State Key Laboratory of Bioin spired Interfacial Materials Science, Soochow University, Suzhou 215123, China.
Macao Institute of Materials Science and Engineering (MIMSE) MUST-SUDA, Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology Taipa, Macau 999078, China.
Natl Sci Rev. 2025 May 22;12(7):nwaf207. doi: 10.1093/nsr/nwaf207. eCollection 2025 Jul.
Achieving high-quality electrical contact at metal/organic semiconductor interfaces is crucial for unlocking the full potential of single-crystal organic thin-film transistors (SC OTFTs). However, the delicate nature of organic single-crystalline films (OSCFs) and the harsh metal deposition process often introduce trap states at the interface, limiting SC-OTFT performance. Here, we present a transparent electrical contact concept that leverages the spontaneous reaction of fluorinated thiol molecules with the electrode, enhancing the buried metal/OSCF contacts. This method significantly lowers the Schottky barrier height by 73.3% and mitigates the Fermi-level pinning effect, resulting in over a 16-fold reduction in contact resistance. As a result, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene ([Formula: see text]-BTBT) OTFTs achieve a high average reliable mobility ([Formula: see text]) of 13.2 [Formula: see text] and a reliability factor up to 89%, surpassing previously reported values. Device simulations indicate that the concentration of tail and deep states is nearly two orders of magnitude lower than that of free states contributing to charge transport, suggesting near-ideal trap-free charge transport. These findings position our molecular contact upgrading method as a promising technology for advancing organic electronics.
在金属/有机半导体界面实现高质量的电接触对于释放单晶有机薄膜晶体管(SC OTFTs)的全部潜力至关重要。然而,有机单晶薄膜(OSCFs)的脆弱性质和苛刻的金属沉积过程常常在界面处引入陷阱态,限制了SC-OTFT的性能。在此,我们提出了一种透明电接触概念,该概念利用氟化硫醇分子与电极的自发反应,增强了埋入式金属/OSCF接触。这种方法显著降低了肖特基势垒高度达73.3%,并减轻了费米能级钉扎效应,导致接触电阻降低了16倍以上。结果,2,7-二辛基[1]苯并噻吩并[3,2-b][1]苯并噻吩([公式:见原文]-BTBT)OTFTs实现了13.2 [公式:见原文] 的高平均可靠迁移率([公式:见原文])和高达89%的可靠性因子,超过了先前报道的值。器件模拟表明,尾部和深能级的浓度比有助于电荷传输的自由态浓度低近两个数量级,表明近乎理想的无陷阱电荷传输。这些发现将我们的分子接触升级方法定位为推进有机电子学的一项有前途的技术。