Suppr超能文献

长新冠症状的日内和日间变化及其关联:密集纵向研究。

Within and between-day variation and associations of symptoms in Long Covid: Intensive longitudinal study.

机构信息

Academic Unit of Primary Medical Care, University of Sheffield, Sheffield, United Kingdom.

College of Medicine and Health, University of Exeter, Exeter, United Kingdom.

出版信息

PLoS One. 2023 Jan 19;18(1):e0280343. doi: 10.1371/journal.pone.0280343. eCollection 2023.

Abstract

BACKGROUND

People with Long Covid (Post Covid-19 Condition) describe multiple symptoms which vary between and within individuals over relatively short time intervals. We aimed to describe the real-time associations between different symptoms and between symptoms and physical activity at the individual patient level.

METHODS AND FINDINGS

Intensive longitudinal study of 82 adults with self-reported Long Covid (median duration 12-18 months). Data collection involved a smartphone app with 5 daily entries over 14 days and continuous wearing of a wrist accelerometer. Data items included 7 symptoms (Visual Analog Scales) and perceived demands in the preceding period (Likert scales). Activity was measured using mean acceleration in the 3-hour periods preceding and following app data entry. Analysis used within-person correlations of symptoms pairs and both pooled and individual symptom networks derived from graphical vector autoregression. App data was suitable for analysis from 74 participants (90%) comprising 4022 entries representing 77.6% of possible entries. Symptoms varied substantially within individuals and were only weakly autocorrelated. The strongest between-subject symptom correlations were of fatigue with pain (partial coefficient 0.5) and cognitive difficulty with light-headedness (0.41). Pooled within-subject correlations showed fatigue correlated with cognitive difficulty (partial coefficient 0.2) pain (0.19) breathlessness (0.15) and light-headedness (0.12) but not anxiety. Cognitive difficulty was correlated with anxiety and light-headedness (partial coefficients 0.16 and 0.17). Individual participant correlation heatmaps and symptom networks showed no clear patterns indicative of distinct phenotypes. Symptoms, including fatigue, were inconsistently correlated with prior or subsequent physical activity: this may reflect adjustment of activity in response to symptoms. Delayed worsening of symptoms after the highest activity peak was observed in 7 participants.

CONCLUSION

Symptoms of Long Covid vary within individuals over short time scales, with heterogenous patterns of symptom correlation. The findings are compatible with altered central symptom processing as an additional factor in Long Covid.

摘要

背景

长新冠(新冠后状况)患者会描述多种症状,这些症状在相对较短的时间间隔内会在个体之间和个体内部发生变化。我们旨在描述不同症状之间以及症状与个体身体活动之间的实时关联。

方法和发现

对 82 名自我报告患有长新冠的成年人进行了密集的纵向研究(中位持续时间为 12-18 个月)。数据收集涉及一个带有智能手机应用程序,参与者在 14 天内每天进行 5 次输入,同时连续佩戴手腕加速计。数据项包括 7 种症状(视觉模拟量表)和前一时期的感知需求(李克特量表)。活动通过在应用程序数据输入前后的 3 小时期间的平均加速度来测量。分析使用症状对之间的个体内相关性以及从图形向量自回归中得出的综合和个体症状网络。应用程序数据可由 74 名参与者(90%)进行分析,其中包含 4022 个条目,占可能条目的 77.6%。症状在个体内部变化很大,并且仅具有弱自相关性。最强的受试者间症状相关性是疲劳与疼痛(部分系数 0.5)和认知困难与头晕(0.41)。综合个体内相关性显示疲劳与认知困难(部分系数 0.2)、疼痛(0.19)、呼吸困难(0.15)和头晕(0.12)相关,但与焦虑无关。认知困难与焦虑和头晕(部分系数 0.16 和 0.17)相关。个体参与者相关性热图和症状网络没有显示出明显的模式,表明没有明确的表型。症状,包括疲劳,与先前或随后的身体活动不一致相关:这可能反映了活动对症状的调整。在 7 名参与者中观察到在最高活动峰值后症状延迟恶化。

结论

长新冠患者的症状在短时间内会在个体内部发生变化,症状相关性存在异质模式。这些发现与作为长新冠的附加因素的中枢症状处理改变相符。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cd9/9851560/74737a66dec3/pone.0280343.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验