National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China.
Nat Commun. 2023 Jan 19;14(1):324. doi: 10.1038/s41467-023-36006-0.
Organic field-effect transistors (OFETs) are of interest in unconventional form of electronics. However, high-performance OFETs are currently contact-limited, which represent a major challenge toward operation in the gigahertz regime. Here, we realize ultralow total contact resistance (R) down to 14.0 Ω ∙ cm in C-DNTT OFETs by using transferred platinum (Pt) as contact. We observe evidence of Pt-catalyzed dehydrogenation of side alkyl chains which effectively reduces the metal-semiconductor van der Waals gap and promotes orbital hybridization. We report the ultrahigh performance OFETs, including hole mobility of 18 cm V s, saturation current of 28.8 μA/μm, subthreshold swing of 60 mV/dec, and intrinsic cutoff frequency of 0.36 GHz. We further develop resist-free transfer and patterning strategies to fabricate large-area OFET arrays, showing 100% yield and excellent variability in the transistor metrics. As alkyl chains widely exist in conjugated molecules and polymers, our strategy can potentially enhance the performance of a broad range of organic optoelectronic devices.
有机场效应晶体管(OFETs)是一种非传统形式的电子器件,引起了人们的关注。然而,目前高性能的 OFETs 受到接触限制,这是向千兆赫工作频率迈进的主要挑战。在这里,我们通过使用转移的铂(Pt)作为接触材料,在 C-DNTT OFET 中实现了超低的总接触电阻(R),低至 14.0 Ω∙cm。我们观察到 Pt 催化的侧烷基链脱氢的证据,这有效地降低了金属半导体范德华间隙并促进了轨道杂化。我们报告了超高性能的 OFET,包括 18 cm V s 的空穴迁移率、28.8 μA/μm 的饱和电流、60 mV/dec 的亚阈值摆幅和 0.36 GHz 的固有截止频率。我们进一步开发了无电阻转移和图案化策略,以制造大面积 OFET 阵列,表现出 100%的产量和出色的晶体管性能变化。由于烷基链广泛存在于共轭分子和聚合物中,我们的策略可能会提高广泛的有机光电设备的性能。