Suppr超能文献

横断计算的代谢衰老与纵向代谢变化无关——支持分层衰老模型。

Cross-sectionally Calculated Metabolic Aging Does Not Relate to Longitudinal Metabolic Changes-Support for Stratified Aging Models.

机构信息

Systems Epidemiology, Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu 90014, Finland.

Biocenter Oulu, University of Oulu, Oulu 90014, Finland.

出版信息

J Clin Endocrinol Metab. 2023 Jul 14;108(8):2099-2104. doi: 10.1210/clinem/dgad032.

Abstract

CONTEXT

Aging varies between individuals, with profound consequences for chronic diseases and longevity. One hypothesis to explain the diversity is a genetically regulated molecular clock that runs differently between individuals. Large human studies with long enough follow-up to test the hypothesis are rare due to practical challenges, but statistical models of aging are built as proxies for the molecular clock by comparing young and old individuals cross-sectionally. These models remain untested against longitudinal data.

OBJECTIVE

We applied novel methodology to test if cross-sectional modeling can distinguish slow vs accelerated aging in a human population.

METHODS

We trained a machine learning model to predict age from 153 clinical and cardiometabolic traits. The model was tested against longitudinal data from another cohort. The training data came from cross-sectional surveys of the Finnish population (n = 9708; ages 25-74 years). The validation data included 3 time points across 10 years in the Young Finns Study (YFS; n = 1009; ages 24-49 years). Predicted metabolic age in 2007 was compared against observed aging rate from the 2001 visit to the 2011 visit in the YFS dataset and correlation between predicted vs observed metabolic aging was determined.

RESULTS

The cross-sectional proxy failed to predict longitudinal observations (R2 = 0.018%, P = 0.67).

CONCLUSION

The finding is unexpected under the clock hypothesis that would produce a positive correlation between predicted and observed aging. Our results are better explained by a stratified model where aging rates per se are similar in adulthood but differences in starting points explain diverging metabolic fates.

摘要

背景

个体之间的衰老存在差异,对慢性病和长寿有深远影响。一种解释这种差异的假设是,存在一个受基因调控的分子钟,它在个体之间的运行方式不同。由于实际挑战,很少有大型的人类研究具有足够长的随访时间来检验这一假设,但衰老的统计模型是通过对横断面的年轻人和老年人进行比较来作为分子钟的替代物构建的。这些模型尚未通过纵向数据进行测试。

目的

我们应用新的方法学来检验横断面建模是否可以区分人类群体中的缓慢衰老与加速衰老。

方法

我们训练了一个机器学习模型,通过 153 项临床和心脏代谢特征来预测年龄。该模型在另一个队列的纵向数据上进行了测试。训练数据来自芬兰人群的横断面调查(n=9708;年龄 25-74 岁)。验证数据包括 Young Finns 研究(YFS;n=1009;年龄 24-49 岁)中的 3 个时间点跨越 10 年。2007 年预测的代谢年龄与 YFS 数据集中 2001 年至 2011 年期间的观察到的衰老率进行比较,并确定预测的代谢衰老与观察到的衰老之间的相关性。

结果

横断面替代物无法预测纵向观察结果(R2=0.018%,P=0.67)。

结论

根据分子钟假设,该发现出乎意料,该假设会产生预测和观察到的衰老之间的正相关。我们的结果更好地解释为分层模型,其中成年后的衰老速度本身相似,但起点的差异解释了不同的代谢命运。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e6/10348460/56ac1b486a4f/dgad032f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验