Liu Ziyang, John Josvin, Agu Emmanuel
Computer Science DepartmentWorcester Polytechnic Institute Worcester MA 01609 USA.
IEEE Open J Eng Med Biol. 2022 Nov 21;3:189-201. doi: 10.1109/OJEMB.2022.3219725. eCollection 2022.
Infection (bacteria in the wound) and ischemia (insufficient blood supply) in Diabetic Foot Ulcers (DFUs) increase the risk of limb amputation. To develop an image-based DFU infection and ischemia detection system that uses deep learning. The DFU dataset was augmented using geometric and color image operations, after which binary infection and ischemia classification was done using the EfficientNet deep learning model and a comprehensive set of baselines. The EfficientNets model achieved 99% accuracy in ischemia classification and 98% in infection classification, outperforming ResNet and Inception (87% accuracy) and Ensemble CNN, the prior state of the art (Classification accuracy of 90% for ischemia 73% for infection). EfficientNets also classified test images in a fraction (10% to 50%) of the time taken by baseline models. This work demonstrates that EfficientNets is a viable deep learning model for infection and ischemia classification.
糖尿病足溃疡(DFU)中的感染(伤口中的细菌)和局部缺血(血液供应不足)会增加肢体截肢的风险。为了开发一种基于深度学习的基于图像的DFU感染和局部缺血检测系统。使用几何和彩色图像操作对DFU数据集进行增强,之后使用EfficientNet深度学习模型和一组全面的基线进行二元感染和局部缺血分类。EfficientNets模型在局部缺血分类中达到了99%的准确率,在感染分类中达到了98%,优于ResNet和Inception(准确率87%)以及先前的技术水平集成卷积神经网络(Ensemble CNN,局部缺血分类准确率为90%,感染分类准确率为73%)。EfficientNets对测试图像的分类时间也仅为基线模型的一小部分(10%至50%)。这项工作表明,EfficientNets是一种用于感染和局部缺血分类的可行深度学习模型。