Suppr超能文献

将常见风险因素与多基因风险评分相结合可提高 2 型糖尿病的预测能力。

Integrating Common Risk Factors with Polygenic Scores Improves the Prediction of Type 2 Diabetes.

机构信息

Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, 450054 Ufa, Russia.

Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia.

出版信息

Int J Mol Sci. 2023 Jan 4;24(2):984. doi: 10.3390/ijms24020984.

Abstract

We tested associations between 13 established genetic variants and type 2 diabetes (T2D) in 1371 study participants from the Volga-Ural region of the Eurasian continent, and evaluated the predictive ability of the model containing polygenic scores for the variants associated with T2D in our dataset, alone and in combination with other risk factors such as age and sex. Using logistic regression analysis, we found associations with T2D for the rs6749704 (OR = 1.68, P = 3.40 × 10), rs333 (OR = 1.99, P = 0.033), rs17366743 (OR = 3.17, P = 2.64 × 10) rs114758349 (OR = 1.77, P = 9.37 × 10), and rs1024611 (OR = 1.38, P = 0.033) polymorphisms. We showed that the most informative prognostic model included weighted polygenic scores for these five loci, and non-genetic factors such as age and sex (AUC 85.8%, 95%CI 83.7-87.8%). Compared to the model containing only non-genetic parameters, adding the polygenic score for the five T2D-associated loci showed improved net reclassification (NRI = 37.62%, 1.39 × 10). Inclusion of all 13 tested SNPs to the model with age and sex did not improve the predictive ability compared to the model containing five T2D-associated variants (NRI = -17.86, = 0.093). The five variants associated with T2D in people from the Volga-Ural region are linked to inflammation () and glucose metabolism regulation (). Further studies in independent groups of T2D patients should validate the prognostic value of the model and elucidate the molecular mechanisms of the disease development.

摘要

我们在来自欧亚大陆伏尔加-乌拉尔地区的 1371 名研究参与者中测试了 13 个已确定的遗传变异与 2 型糖尿病(T2D)之间的关联,并评估了包含与我们数据集相关的 T2D 变异的多基因评分的模型的预测能力,单独使用和与其他风险因素(如年龄和性别)结合使用。使用逻辑回归分析,我们发现 rs6749704(OR=1.68,P=3.40×10)、rs333(OR=1.99,P=0.033)、rs17366743(OR=3.17,P=2.64×10)、rs114758349(OR=1.77,P=9.37×10)和 rs1024611(OR=1.38,P=0.033)多态性与 T2D 相关。我们表明,最具信息量的预后模型包括这五个位点的加权多基因评分以及非遗传因素(年龄和性别)(AUC 85.8%,95%CI 83.7-87.8%)。与仅包含非遗传参数的模型相比,添加与五个 T2D 相关位点相关的多基因评分可提高净重新分类(NRI=37.62%,1.39×10)。与包含五个 T2D 相关变体的模型相比,将所有 13 个测试的 SNP 包含在模型中与年龄和性别相比并未提高预测能力(NRI=-17.86,=0.093)。与伏尔加-乌拉尔地区人群的 T2D 相关的五个变体与炎症()和葡萄糖代谢调节()有关。在独立的 T2D 患者组中进行进一步研究应验证该模型的预后价值,并阐明疾病发展的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c9/9866792/e53fd9a86c04/ijms-24-00984-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验