Arenas-Vivo Ana, Celis Arias Vanessa, Amariei Georgiana, Rosal Roberto, Izquierdo-Barba Isabel, Hidalgo Tania, Vallet-Regí María, Beltrán Hiram I, Loera-Serna Sandra, Horcajada Patricia
Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles, Spain.
Basic Science Department, Metropolitan-Azcapotzalco Autonomous University (UAM), Av. San Pablo No 180, Col. Reynosa-Tamaulipas, Ciudad de México 02200, Mexico.
Pharmaceutics. 2023 Jan 16;15(1):301. doi: 10.3390/pharmaceutics15010301.
Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal-organic framework (MOF; here denoted ) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging , one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor.
表面微生物定植及其潜在的生物膜形成是目前一个主要的未解决问题,导致了近75%的人类传染病。致病性生物膜能够在高剂量抗生素下存活,导致治疗效果不佳,进而提高感染患病率。抗菌涂层因其具有杀菌活性且不影响基体材料,已成为对抗生物医学设备中生物膜形成的一种有前景的策略。在此,我们首次提出一种银基金属有机框架(MOF;此处表示为 ),其具有独特的防污性能,不仅能够抑制细菌的初始粘附,还能抑制潜在的表面污染。首先,通过琼脂扩散和菌落计数试验在细菌培养条件下证实了AgBDC的稳定性(胶体、结构和化学稳定性),证明了其对具有挑战性的 (革兰氏阴性耐药菌的主要代表性指标之一)的杀菌作用。然后,将该材料制成均匀的旋涂AgBDC薄膜,通过菌落计数、光密度或共聚焦扫描显微镜等多种互补方法研究其防污和杀菌特性,这些方法首次使我们能够通过一种特定的荧光染料(钙荧光白)可视化MOF产生的生物膜影响。