Masood Asad, Ahmed Naeem, Razip Wee M F Mohd, Patra Anuttam, Mahmoudi Ebrahim, Siow Kim S
Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Chemistry of Interfaces Group, Luleå University of Technology, SE-97187 Luleå, Sweden.
Polymers (Basel). 2023 Jan 6;15(2):307. doi: 10.3390/polym15020307.
Antibacterial coating is necessary to prevent biofilm-forming bacteria from colonising medical tools causing infection and sepsis in patients. The recent coating strategies such as immobilisation of antimicrobial materials and low-pressure plasma polymerisation may require multiple processing steps involving a high-vacuum system and time-consuming process. Some of those have limited efficacy and durability. Here, we report a rapid and one-step atmospheric pressure plasma polymerisation (APPP) of D-limonene to produce nano-thin films with hydrophobic-like properties for antibacterial applications. The influence of plasma polymerisation time on the thickness, surface characteristic, and chemical composition of the plasma-polymerised films was systematically investigated. Results showed that the nano-thin films deposited at 1 min on glass substrate are optically transparent and homogenous, with a thickness of 44.3 ± 4.8 nm, a smooth surface with an average roughness of 0.23 ± 0.02 nm. For its antimicrobial activity, the biofilm assay evaluation revealed a significant 94% decrease in the number of Escherichia coli () compared to the control sample. More importantly, the resultant nano-thin films exhibited a potent bactericidal effect that can distort and rupture the membrane of the treated bacteria. These findings provide important insights into the development of bacteria-resistant and biocompatible coatings on the arbitrary substrate in a straightforward and cost-effective route at atmospheric pressure.
抗菌涂层对于防止形成生物膜的细菌在医疗工具上定殖从而导致患者感染和败血症是必要的。最近的涂层策略,如抗菌材料的固定化和低压等离子体聚合,可能需要涉及高真空系统的多个处理步骤以及耗时的过程。其中一些策略的功效和耐久性有限。在此,我们报告了一种快速且一步法的大气压等离子体聚合(APPP)柠檬烯方法,以制备具有类似疏水性的纳米薄膜用于抗菌应用。系统地研究了等离子体聚合时间对等离子体聚合薄膜的厚度、表面特性和化学成分的影响。结果表明,在玻璃基板上沉积1分钟的纳米薄膜是光学透明且均匀的,厚度为44.3±4.8纳米,表面光滑,平均粗糙度为0.23±0.02纳米。就其抗菌活性而言,生物膜检测评估显示,与对照样品相比,大肠杆菌数量显著减少了94%。更重要的是,所得的纳米薄膜表现出强大的杀菌效果,能够使被处理细菌的细胞膜变形和破裂。这些发现为在大气压下以直接且经济高效的途径在任意基板上开发抗细菌且生物相容的涂层提供了重要见解。