Fuster Marta G, Moulefera Imane, Muñoz M Noelia, Montalbán Mercedes G, Víllora Gloria
Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30071 Murcia, Spain.
Polymers (Basel). 2023 Jan 11;15(2):382. doi: 10.3390/polym15020382.
A method for the synthesis of cellulose nanoparticles using the ionic liquid 1-ethyl-3-methylimidazolium acetate has been optimised. The use of a highly biocompatible biopolymer such as cellulose, together with the use of an ionic liquid, makes this method a promising way to obtain nanoparticles with good capability for drug carrying. The operating conditions of the synthesis have been optimised based on the average hydrodynamic diameter, the polydispersity index, determined by Dynamic Light Scattering (DLS) and the Z-potential, obtained by phase analysis light scattering (PALS), to obtain cellulose nanoparticles suitable for use in biomedicine. The obtained cellulose nanoparticles have been characterised by Fourier transform infrared spectroscopy (FTIR) with attenuated total reflectance (ATR), field emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA/DTA). Finally, cell viability studies have been performed with a cancer cell line (HeLa) and with a healthy cell line (EA.hy926). These have shown that the cellulose nanoparticles obtained are not cytotoxic in the concentration range of the studied nanoparticles. The results obtained in this work constitute a starting point for future studies on the use of cellulose nanoparticles, synthesised from ionic liquids, for biomedical applications such as targeted drug release or controlled drug release.
一种使用离子液体1-乙基-3-甲基咪唑醋酸盐合成纤维素纳米颗粒的方法已得到优化。使用纤维素这种具有高度生物相容性的生物聚合物,再结合离子液体的使用,使得该方法成为获得具有良好载药能力的纳米颗粒的一种有前景的途径。基于动态光散射(DLS)测定的平均流体动力学直径、多分散指数以及通过相分析光散射(PALS)获得的Z电位,对合成的操作条件进行了优化,以获得适用于生物医学的纤维素纳米颗粒。所获得的纤维素纳米颗粒已通过衰减全反射傅里叶变换红外光谱(FTIR-ATR)、场发射扫描电子显微镜(FESEM)和热重分析(TGA/DTA)进行了表征。最后,对癌细胞系(HeLa)和健康细胞系(EA.hy926)进行了细胞活力研究。这些研究表明,在所研究的纳米颗粒浓度范围内,所获得的纤维素纳米颗粒没有细胞毒性。这项工作所获得的结果为未来关于使用由离子液体合成的纤维素纳米颗粒用于靶向药物释放或控释等生物医学应用的研究奠定了基础。