文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三维生物打印颅面组织工程的生物医学应用

Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering.

作者信息

Charbe Nitin Bharat, Tambuwala Murtaza, Palakurthi Sushesh Srivatsa, Warokar Amol, Hromić-Jahjefendić Altijana, Bakshi Hamid, Zacconi Flavia, Mishra Vijay, Khadse Saurabh, Aljabali Alaa A, El-Tanani Mohamed, Serrano-Aroca Ãngel, Palakurthi Srinath

机构信息

Irma Lerma Rangel College of Pharmacy Texas A&M Health Science Center Kingsville Texas USA.

School of Pharmacy and Pharmaceutical Science Ulster University Coleraine UK.

出版信息

Bioeng Transl Med. 2022 May 10;8(1):e10333. doi: 10.1002/btm2.10333. eCollection 2023 Jan.


DOI:10.1002/btm2.10333
PMID:36684092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9842068/
Abstract

Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.

摘要

颅面区域的解剖学并发症常常给受损组织的手术修复或置换带来巨大挑战。手术修复有其自身的一系列局限性,包括供体组织稀缺、免疫排斥、术后使用免疫抑制剂以及在恢复自然美学吸引力方面的限制。生物材料、细胞生物学和工程领域的快速发展帮助科学家创造出了类似细胞化骨骼肌的结构。然而,现有方法在构建具有临床应用价值的大型、高血管化组织方面仍存在局限性。随着三维(3D)生物打印技术的进步,科学家和临床医生现在能够生产出更符合患者特定需求、与颅面缺损结构完美匹配的骨骼肌和骨骼功能性植入物。使用3D生物打印进行颅面组织再生可以解决并消除来自供体部位的手术移植限制。创建全新功能性组织,精确模拟受损组织的解剖和生理功能,这一概念极具吸引力。这对于降低供体部位发病率和保持美观至关重要。3D生物打印可以整合组织工程的所有三个基本要素,即受损颅面组织的修复、重建和再生。这种整合从根本上有助于制定针对患者的治疗方案,并根据损伤部位驱动创建用于颅面缺损的功能性植入物。本文全面介绍了3D生物打印在骨骼肌组织再生方面的最新进展和应用,以及其在恢复受损颅面组织功能能力方面的应用。我们还讨论了颅面骨血管化目前面临的挑战,并对未来方向发表了看法,包括建立组织工程化骨骼肌与周围神经系统之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/76b36ee2c734/BTM2-8-e10333-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/97cb77bd948a/BTM2-8-e10333-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/8109af656238/BTM2-8-e10333-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/57b113a8a958/BTM2-8-e10333-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/76b36ee2c734/BTM2-8-e10333-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/97cb77bd948a/BTM2-8-e10333-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/8109af656238/BTM2-8-e10333-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/57b113a8a958/BTM2-8-e10333-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f64/9842068/76b36ee2c734/BTM2-8-e10333-g002.jpg

相似文献

[1]
Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering.

Bioeng Transl Med. 2022-5-10

[2]
Recent advances in 3D bioprinting of musculoskeletal tissues.

Biofabrication. 2021-3-10

[3]
3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

Ann Biomed Eng. 2017-1

[4]
Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

J Dent Res. 2015-6-29

[5]
Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.

Acta Biomater. 2023-1-15

[6]
Printing New Bones: From Print-and-Implant Devices to Bioprinted Bone Organ Precursors.

Trends Mol Med. 2021-7

[7]
Applications of 3D printing on craniofacial bone repair: A systematic review.

J Dent. 2018-11-12

[8]
Advances in three-dimensional bioprinting for hard tissue engineering.

Tissue Eng Regen Med. 2016-12-17

[9]
3D bioprinted functional and contractile cardiac tissue constructs.

Acta Biomater. 2018-2-13

[10]
Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models.

Biomaterials. 2022-8

引用本文的文献

[1]
Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis.

J Funct Biomater. 2025-1-10

[2]
Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction.

J Nanobiotechnology. 2024-8-31

[3]
Insulin promotes the bone formation capability of human dental pulp stem cells through attenuating the IIS/PI3K/AKT/mTOR pathway axis.

Stem Cell Res Ther. 2024-7-29

[4]
Three-Dimensional Printing of Hydrogels for Flexible Sensors: A Review.

Gels. 2024-3-8

[5]
Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment.

Curr Issues Mol Biol. 2024-1-5

[6]
Recent Advances in Functionalized Electrospun Membranes for Periodontal Regeneration.

Pharmaceutics. 2023-12-4

[7]
Revolutionising health care: Exploring the latest advances in medical sciences.

J Glob Health. 2023-8-4

[8]
An altered oral microbiota induced by injections of superparamagnetic iron oxide nanoparticle-labeled periodontal ligament stem cells helps periodontal bone regeneration in rats.

Bioeng Transl Med. 2022-12-13

[9]
Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering.

Materials (Basel). 2023-4-18

[10]
A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies.

Polymers (Basel). 2022-12-2

本文引用的文献

[1]
3D-printed/electrospun bioresorbable nanofibrous drug-eluting cuboid frames for repair of alveolar bone defects.

Int J Pharm. 2022-3-5

[2]
Rabbit calvarial and mandibular critical-sized bone defects as an experimental model for the evaluation of craniofacial bone tissue regeneration.

J Stomatol Oral Maxillofac Surg. 2022-11

[3]
In vivo evaluation of 3D printed polycaprolactone composite scaffold and recombinant human bone morphogenetic protein-2 for vertical bone augmentation with simultaneous implant placement on rabbit calvaria.

J Biomed Mater Res B Appl Biomater. 2022-5

[4]
Patient specific Polymethyl methacrylate customised cranioplasty using 3D printed silicone moulds: Technical note.

Int J Med Robot. 2022-4

[5]
Repair of critical-size porcine craniofacial bone defects using a collagen-polycaprolactone composite biomaterial.

Biofabrication. 2021-11-1

[6]
Preparation and Analysis of Craniofacial Titanium Implants Surfaces Produced by Additive 3D Printing and Conventional Manufacturing.

Craniomaxillofac Trauma Reconstr. 2021-9

[7]
Long-term efficacy and safety of 3D printed implant in patients with nasal septal deformities.

Eur Arch Otorhinolaryngol. 2022-4

[8]
Digitally designed, personalized bone cement spacer for staged TMJ and mandibular reconstruction - Introduction of a new technique.

J Craniomaxillofac Surg. 2021-10

[9]
3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential.

J Mech Behav Biomed Mater. 2021-9

[10]
Feasibility of Customised Polymethyl Methacrylate Implants Fabricated Using 3D Printed Flexible Moulds for Correction of Facial Skeletal Deformities.

J Craniofac Surg. 2021-9-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索