Parveen Nazia, Ramachandran Prabhakar, Seshadri Venkatakrishnan, Perrett Ben, Fielding Andrew
Therapeutic Physics, Radiation Oncology, Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.
School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Australia.
J Med Phys. 2022 Jul-Sep;47(3):235-242. doi: 10.4103/jmp.jmp_35_22. Epub 2022 Nov 8.
The aim of this study was to compare the Exradin W2 scintillator, PTW microDiamond, IBA Razor Nano, and IBA Razor chamber detectors for small-field dose measurements and validate the measured data against the EGSnrc user code and observe the variation between daisy-chained and direct measurement methods for the above detectors.
The W2 scintillator, microDiamond, Razor Nano, and Razor chamber detectors were used to measure the in-plane and cross-plane profiles and the output factors (OFs) at 10 cm depth, and 90 source-to-surface distance for 6MV X-rays (Elekta Versa HD). The field sizes ranged from 0.5 cm × 0.5 cm to 5 cm × 5 cm. The BEAMnrc/DOSXYZnrc user codes (EGSnrc) were used to simulate the reference profiles. Gamma analysis was performed to compare the measured and simulated dose distributions.
The OFs measured with the W2 scintillator, microDiamond, Razor Nano chamber, Razor chamber, and the calculated Monte Carlo (MC) showed agreement to within 1% for the 3 cm × 3 cm field size. The uncertainty in the MC simulation was observed to be 0.4%. The percent difference in OFs measured using daisy-chained and direct measurement methods was within 0.15%, 0.4%, 1.4%, and 2.4% for microDiamond, W2 scintillator, Nano, and Razor chamber detectors, respectively.
The lateral beam profiles and OFs of W2 scintillator, microDiamond, Razor Nano, and Razor chambers exhibit good agreement with the MC simulation within the nominal field sizes. Our results demonstrate that we can achieve considerable time-saving by directly measuring small-field OFs without daisy-chained methods using microDiamond and W2 scintillator. In terms of ease of use, sensitivity, reproducibility, and from a practical standpoint, we recommend microDiamond for small-field dosimetry.
本研究旨在比较Exradin W2闪烁体探测器、PTW微钻石探测器、IBA Razor Nano探测器和IBA Razor电离室探测器在小射野剂量测量方面的性能,并根据EGSnrc用户代码验证测量数据,同时观察上述探测器在菊花链连接测量方法和直接测量方法之间的差异。
使用W2闪烁体探测器、微钻石探测器、Razor Nano探测器和Razor电离室探测器,在10 cm深度、源皮距90 cm条件下,对6MV X射线(医科达Versa HD直线加速器)的平面内和平面交叉剂量分布以及输出因子(OF)进行测量,射野尺寸范围为0.5 cm×0.5 cm至5 cm×5 cm。使用BEAMnrc/DOSXYZnrc用户代码(EGSnrc)模拟参考剂量分布。采用伽马分析比较测量和模拟的剂量分布。
对于3 cm×3 cm的射野尺寸,使用W2闪烁体探测器、微钻石探测器、Razor Nano电离室探测器、Razor电离室探测器测量的输出因子与计算得到的蒙特卡罗(MC)模拟结果之间的一致性在1%以内。观察到MC模拟的不确定性为0.4%。对于微钻石探测器、W2闪烁体探测器、Nano探测器和Razor电离室探测器,采用菊花链连接测量方法和直接测量方法测量的输出因子的百分比差异分别在0.15%、0.4%、1.4%和2.4%以内。
在标称射野尺寸范围内,W2闪烁体探测器、微钻石探测器、Razor Nano探测器和Razor电离室探测器的侧向射野剂量分布和输出因子与MC模拟结果具有良好的一致性。我们的结果表明,使用微钻石探测器和W2闪烁体探测器直接测量小射野输出因子,无需采用菊花链连接方法,可节省大量时间。从易用性、灵敏度、可重复性以及实际应用的角度考虑,我们推荐使用微钻石探测器进行小射野剂量测定。