Suppr超能文献

一种用于评估卵巢癌预后和免疫微环境的新型铁死亡相关特征的构建与验证

Construction and validation of a novel ferroptosis-related signature for evaluating prognosis and immune microenvironment in ovarian cancer.

作者信息

Yang Jiani, Wang Chao, Cheng Shanshan, Zhang Yue, Jin Yue, Zhang Nan, Wang Yu

机构信息

Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.

出版信息

Front Genet. 2023 Jan 5;13:1094474. doi: 10.3389/fgene.2022.1094474. eCollection 2022.

Abstract

Ovarian cancer (OV) is the most lethal form of gynecological malignancy worldwide, with limited therapeutic options and high recurrence rates. However, research focusing on prognostic patterns of ferroptosis-related genes (FRGs) in ovarian cancer is still lacking. From the 6,406 differentially expressed genes (DEGs) between TCGA-OV ( = 376) and GTEx cohort ( = 180), we identified 63 potential ferroptosis-related genes. Through the LASSO-penalized Cox analysis, 3 prognostic genes, SLC7A11, ZFP36, and TTBK2, were finally distinguished. The time-dependent ROC curves and K-M survival analysis performed powerful prognostic ability of the 3-gene signature. Stepwise, we constructed and validated the nomogram based on the 3-gene signature and clinical features, with promising prognostic value in both TCGA (-value < .0001) and ICGC cohort (-value = .0064). Gene Set Enrichment Analysis elucidated several potential pathways between the groups stratified by 3-gene signature, while the m6A gene analysis implied higher m6A level in the high-risk group. We applied the CIBERSORT algorithm to distinct tumor immune microenvironment between two groups, with less activated dendritic cells (DCs) and plasma cells, more M0 macrophages infiltration, and higher expression of key immune checkpoint molecules (CD274, CTLA4, HAVCR2, and PDCD1LG2) in the high-risk group. In addition, the low-risk group exhibited more favorable immunotherapy and chemotherapy responses. Collectively, our findings provided new prospects in the role of ferroptosis-related genes, as a promising prediction tool for prognosis and immune responses, in order to assist personalized treatment decision-making among ovarian cancer patients.

摘要

卵巢癌(OV)是全球最致命的妇科恶性肿瘤形式,治疗选择有限且复发率高。然而,针对卵巢癌中铁死亡相关基因(FRGs)预后模式的研究仍然缺乏。从TCGA-OV队列(n = 376)和GTEx队列(n = 180)之间的6406个差异表达基因(DEGs)中,我们鉴定出63个潜在的铁死亡相关基因。通过LASSO惩罚Cox分析,最终区分出3个预后基因,即溶质载体家族7成员11(SLC7A11)、锌指蛋白36(ZFP36)和微管和微管结合激酶2(TTBK2)。时间依赖性ROC曲线和K-M生存分析显示了这3基因特征具有强大的预后能力。接着,我们基于这3基因特征和临床特征构建并验证了列线图,在TCGA队列(P值< 0.0001)和ICGC队列(P值 = 0.0064)中均具有良好的预后价值。基因集富集分析阐明了由3基因特征分层的组之间的几种潜在途径,而m6A基因分析表明高危组中的m6A水平更高。我们应用CIBERSORT算法来区分两组之间不同的肿瘤免疫微环境,高危组中活化的树突状细胞(DCs)和浆细胞较少,M0巨噬细胞浸润较多,关键免疫检查点分子(CD274、CTLA4、HAVCR2和PDCD1LG2)的表达较高。此外,低危组表现出更有利的免疫治疗和化疗反应。总体而言,我们的研究结果为铁死亡相关基因的作用提供了新的前景,作为一种有前景的预后和免疫反应预测工具,以协助卵巢癌患者进行个性化治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6438/9849594/a544c7983d99/fgene-13-1094474-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验