文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating.

作者信息

Vassallo Marta, Martella Daniele, Barrera Gabriele, Celegato Federica, Coïsson Marco, Ferrero Riccardo, Olivetti Elena S, Troia Adriano, Sözeri Hüseyin, Parmeggiani Camilla, Wiersma Diederik S, Tiberto Paola, Manzin Alessandra

机构信息

Department of Advanced Materials Metrology and Life Science, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce, 91, 10135Torino, Italy.

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129Torino, Italy.

出版信息

ACS Omega. 2023 Jan 4;8(2):2143-2154. doi: 10.1021/acsomega.2c06244. eCollection 2023 Jan 17.


DOI:10.1021/acsomega.2c06244
PMID:36687092
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9850460/
Abstract

Magnetic hyperthermia is an oncological therapy that exploits magnetic nanoparticles activated by radiofrequency magnetic fields to produce a controlled temperature increase in a diseased tissue. The specific loss power (SLP) of magnetic nanoparticles or the capability to release heat can be improved using surface treatments, which can reduce agglomeration effects, thus impacting on local magnetostatic interactions. In this work, FeO nanoparticles are synthesized via a coprecipitation reaction and fully characterized in terms of structural, morphological, dimensional, magnetic, and hyperthermia properties (under the Hergt-Dutz limit). Different types of surface coatings are tested, comparing their impact on the heating efficacy and colloidal stability, resulting that sodium citrate leads to a doubling of the SLP with a substantial improvement in dispersion and stability in solution over time; an SLP value of around 170 W/g is obtained in this case for a 100 kHz and 48 kA/m magnetic field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/997d3aa4c017/ao2c06244_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/88ee073592cc/ao2c06244_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/1568f02936d1/ao2c06244_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/a6d282c1e733/ao2c06244_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/e7ea240884d5/ao2c06244_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/58ac3d84f4c3/ao2c06244_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/997d3aa4c017/ao2c06244_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/88ee073592cc/ao2c06244_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/1568f02936d1/ao2c06244_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/a6d282c1e733/ao2c06244_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/e7ea240884d5/ao2c06244_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/58ac3d84f4c3/ao2c06244_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfa6/9850460/997d3aa4c017/ao2c06244_0007.jpg

相似文献

[1]
Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating.

ACS Omega. 2023-1-4

[2]
In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.

Comput Methods Programs Biomed. 2022-8

[3]
Influence of size, volume concentration and aggregation state on magnetic nanoparticle hyperthermia properties excitation conditions.

Nanoscale Adv. 2024-2-14

[4]
Engineering Core-Shell Structures of Magnetic Ferrite Nanoparticles for High Hyperthermia Performance.

Nanomaterials (Basel). 2020-5-21

[5]
The Heating Efficiency and Imaging Performance of Magnesium Iron Oxide@tetramethyl Ammonium Hydroxide Nanoparticles for Biomedical Applications.

Nanomaterials (Basel). 2021-4-23

[6]
GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.

ACS Appl Mater Interfaces. 2019-6-26

[7]
Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.

Int J Hyperthermia. 2013-10-18

[8]
One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.

Carbohydr Polym. 2020-3-6

[9]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[10]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

引用本文的文献

[1]
Iron Oxide Nanoparticle Uptake, Toxicity, and Steroidogenesis in Adrenocortical Carcinoma Cells Using a Multicellular in vitro Model.

Int J Nanomedicine. 2025-8-29

[2]
Computational Modelling of Cancer Nanomedicine: Integrating Hyperthermia Treatment Into a Multiphase Porous-Media Tumour Model.

Int J Numer Method Biomed Eng. 2025-8

[3]
Magnetically Induced Catalysis: Definition, Advances, and Potential.

Angew Chem Int Ed Engl. 2025-6-10

[4]
Enhanced photocatalytic degradation of malachite green and trypan blue using 3-aminopropyl triethoxysilane (APTES) functionalized iron oxide nanocomposite.

RSC Adv. 2025-2-26

[5]
Green Sol-Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications.

Pharmaceutics. 2024-12-11

[6]
Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility.

Beilstein J Nanotechnol. 2024-12-11

[7]
Adrenocortical Cancer Cell uptake of Iron Oxide Nanoparticles.

bioRxiv. 2024-12-7

[8]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[9]
Isolation of B Cells Using Silane-Coated Magnetic Nanoparticles.

Int J Biomater. 2024-10-30

[10]
Light-Controlled Magnetic Properties: An Energy-Efficient Opto-Mechanical Control over Magnetic Films by Liquid Crystalline Networks.

Adv Sci (Weinh). 2024-12

本文引用的文献

[1]
Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence.

ACS Appl Mater Interfaces. 2022-10-27

[2]
Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood-brain barrier.

Nanoscale Adv. 2018-10-16

[3]
In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.

Comput Methods Programs Biomed. 2022-8

[4]
Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle.

Theranostics. 2022

[5]
Hyperthermia Effect of Nanoclusters Governed by Interparticle Crystalline Structures.

ACS Omega. 2021-11-10

[6]
Coating of Magnetite Nanoparticles with Fucoidan to Enhance Magnetic Hyperthermia Efficiency.

Nanomaterials (Basel). 2021-11-2

[7]
Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI.

Nanomaterials (Basel). 2021-10-28

[8]
Experimental and Modelling Analysis of the Hyperthermia Properties of Iron Oxide Nanocubes.

Nanomaterials (Basel). 2021-8-25

[9]
Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach.

Nanoscale. 2021-2-25

[10]
Perfusion, cryopreservation, and nanowarming of whole hearts using colloidally stable magnetic cryopreservation agent solutions.

Sci Adv. 2021-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索