Suppr超能文献

图形用户界面设计以提高对患者报告的结局症状反应的理解。

Graphical user interface design to improve understanding of the patient-reported outcome symptom response.

机构信息

Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Korea.

Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea.

出版信息

PLoS One. 2023 Jan 24;18(1):e0278465. doi: 10.1371/journal.pone.0278465. eCollection 2023.

Abstract

BACKGROUND

Symptom monitoring application (SMA) has clinical benefits to cancer patients but patients experience difficulties in using it. Few studies have identified which types of graphical user interface (GUI) are preferred by cancer patients for using the SMA.

METHODS

This is a cross-sectional study aimed to identify preferred GUI among cancer patients to use SMA. Total of 199 patients were asked to evaluate 8 types of GUIs combining text, icon, illustration, and colors using mixed-methods. Subgroup analyses were performed according to age and gender.

RESULTS

The mean age of the patients was 57 and 42.5% was male. The most preferred GUI was "Text + Icon + Color" (mean = 4.43), followed by "Text + Icon" (mean = 4.39). Older patients (≥ 60 years) preferred "Text + Icon" than younger patients (p for interaction < 0.01). Simple and intuitive text and icons were the most useful GUI for cancer patients to use the SMA.

CONCLUSION

Simple and intuitive text and icons were the most useful GUI for cancer patients to use the SMA. Researchers need to be careful when applying realistic face drawings to cancer symptom monitoring applications because they can recall negative images of cancer.

摘要

背景

症状监测应用程序(SMA)对癌症患者具有临床益处,但患者在使用时会遇到困难。很少有研究确定癌症患者更喜欢哪种类型的图形用户界面(GUI)来使用 SMA。

方法

这是一项横断面研究,旨在确定癌症患者使用 SMA 时首选的 GUI。共有 199 名患者被要求使用混合方法评估 8 种结合文本、图标、插图和颜色的 GUI。根据年龄和性别进行了亚组分析。

结果

患者的平均年龄为 57 岁,其中 42.5%为男性。最受欢迎的 GUI 是“文本+图标+颜色”(平均值=4.43),其次是“文本+图标”(平均值=4.39)。年龄较大的患者(≥60 岁)比年轻患者(交互 p 值<0.01)更喜欢“文本+图标”。简单直观的文本和图标是癌症患者使用 SMA 最有用的 GUI。

结论

简单直观的文本和图标是癌症患者使用 SMA 最有用的 GUI。研究人员在将逼真的面部绘画应用于癌症症状监测应用程序时需要小心,因为它们可能会回忆起癌症的负面形象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7727/9873161/a26af0ecd4e7/pone.0278465.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验