J Proteome Res. 2023 Feb 3;22(2):491-500. doi: 10.1021/acs.jproteome.2c00714. Epub 2023 Jan 25.
Improved throughput of analysis and lowered limits of detection have allowed single-cell chemical analysis to go beyond the detection of a few molecules in such volume-limited samples, enabling researchers to characterize different functional states of individual cells. Image-guided single-cell mass spectrometry leverages optical and fluorescence microscopy in the high-throughput analysis of cellular and subcellular targets. In this work, we propose DATSIGMA (ta-driven ools for ingle-cell analysis using mage-uided ss spectrometry), a workflow based on data-driven and machine learning approaches for feature extraction and enhanced interpretability of complex single-cell mass spectrometry data. Here, we implemented our toolset with user-friendly programs and tested it on multiple experimental data sets that cover a wide range of biological applications, including classifying various brain cell types. Because it is open-source, it offers a high level of customization and can be easily adapted to other types of single-cell mass spectrometry data.
分析通量的提高和检测限的降低使得单细胞化学分析能够超越对这种体积有限的样本中少数分子的检测,使研究人员能够描述单个细胞的不同功能状态。基于图像的单细胞质谱分析利用光学和荧光显微镜对细胞和亚细胞靶标进行高通量分析。在这项工作中,我们提出了 DATSIGMA(基于图像引导的单细胞质谱分析的 ta 驱动工具),这是一种基于数据驱动和机器学习方法的工作流程,用于提取特征和增强复杂单细胞质谱数据的可解释性。在这里,我们用用户友好的程序实现了我们的工具集,并在多个涵盖广泛生物应用的实验数据集上对其进行了测试,包括对各种脑细胞类型进行分类。由于它是开源的,因此它提供了高度的可定制性,可以很容易地适应其他类型的单细胞质谱数据。