Suppr超能文献

基于数据驱动和机器学习的图像引导单细胞质谱分析框架。

Data-Driven and Machine Learning-Based Framework for Image-Guided Single-Cell Mass Spectrometry.

出版信息

J Proteome Res. 2023 Feb 3;22(2):491-500. doi: 10.1021/acs.jproteome.2c00714. Epub 2023 Jan 25.

Abstract

Improved throughput of analysis and lowered limits of detection have allowed single-cell chemical analysis to go beyond the detection of a few molecules in such volume-limited samples, enabling researchers to characterize different functional states of individual cells. Image-guided single-cell mass spectrometry leverages optical and fluorescence microscopy in the high-throughput analysis of cellular and subcellular targets. In this work, we propose DATSIGMA (ta-driven ools for ingle-cell analysis using mage-uided ss spectrometry), a workflow based on data-driven and machine learning approaches for feature extraction and enhanced interpretability of complex single-cell mass spectrometry data. Here, we implemented our toolset with user-friendly programs and tested it on multiple experimental data sets that cover a wide range of biological applications, including classifying various brain cell types. Because it is open-source, it offers a high level of customization and can be easily adapted to other types of single-cell mass spectrometry data.

摘要

分析通量的提高和检测限的降低使得单细胞化学分析能够超越对这种体积有限的样本中少数分子的检测,使研究人员能够描述单个细胞的不同功能状态。基于图像的单细胞质谱分析利用光学和荧光显微镜对细胞和亚细胞靶标进行高通量分析。在这项工作中,我们提出了 DATSIGMA(基于图像引导的单细胞质谱分析的 ta 驱动工具),这是一种基于数据驱动和机器学习方法的工作流程,用于提取特征和增强复杂单细胞质谱数据的可解释性。在这里,我们用用户友好的程序实现了我们的工具集,并在多个涵盖广泛生物应用的实验数据集上对其进行了测试,包括对各种脑细胞类型进行分类。由于它是开源的,因此它提供了高度的可定制性,可以很容易地适应其他类型的单细胞质谱数据。

相似文献

1
Data-Driven and Machine Learning-Based Framework for Image-Guided Single-Cell Mass Spectrometry.
J Proteome Res. 2023 Feb 3;22(2):491-500. doi: 10.1021/acs.jproteome.2c00714. Epub 2023 Jan 25.
2
An open-source solution for advanced imaging flow cytometry data analysis using machine learning.
Methods. 2017 Jan 1;112:201-210. doi: 10.1016/j.ymeth.2016.08.018. Epub 2016 Sep 2.
3
Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning.
Anal Chem. 2020 Jul 7;92(13):9338-9347. doi: 10.1021/acs.analchem.0c01660. Epub 2020 Jun 25.
4
A cell-level quality control workflow for high-throughput image analysis.
BMC Bioinformatics. 2020 Jul 2;21(1):280. doi: 10.1186/s12859-020-03603-5.
5
microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling.
J Am Soc Mass Spectrom. 2017 Sep;28(9):1919-1928. doi: 10.1007/s13361-017-1704-1. Epub 2017 Jun 7.
6
Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics.
Anal Chem. 2019 May 7;91(9):5768-5776. doi: 10.1021/acs.analchem.8b05985. Epub 2019 Apr 15.
7
An end-to-end workflow for multiplexed image processing and analysis.
Nat Protoc. 2023 Nov;18(11):3565-3613. doi: 10.1038/s41596-023-00881-0. Epub 2023 Oct 10.
10
Open-Source Software Tools, Databases, and Resources for Single-Cell and Single-Cell-Type Metabolomics.
Methods Mol Biol. 2020;2064:191-217. doi: 10.1007/978-1-4939-9831-9_15.

引用本文的文献

2
Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior.
J Proteome Res. 2025 Apr 4;24(4):1596-1605. doi: 10.1021/acs.jproteome.4c00832. Epub 2025 Jan 10.
3
Mass-Guided Single-Cell MALDI Imaging of Low-Mass Metabolites Reveals Cellular Activation Markers.
Adv Sci (Weinh). 2025 Feb;12(5):e2410506. doi: 10.1002/advs.202410506. Epub 2024 Dec 12.
4
Single Cell mass spectrometry: Towards quantification of small molecules in individual cells.
Trends Analyt Chem. 2024 May;174. doi: 10.1016/j.trac.2024.117657. Epub 2024 Mar 19.
5
Recent Developments in Machine Learning for Mass Spectrometry.
ACS Meas Sci Au. 2024 Feb 21;4(3):233-246. doi: 10.1021/acsmeasuresciau.3c00060. eCollection 2024 Jun 19.
6
Single Cell Analysis of Proteoforms.
J Proteome Res. 2024 Jun 7;23(6):1883-1893. doi: 10.1021/acs.jproteome.4c00075. Epub 2024 Mar 18.

本文引用的文献

2
Single-cell mass spectrometry.
Trends Biotechnol. 2022 Nov;40(11):1374-1392. doi: 10.1016/j.tibtech.2022.04.004. Epub 2022 May 11.
3
Sphingolipids control dermal fibroblast heterogeneity.
Science. 2022 Apr 15;376(6590):eabh1623. doi: 10.1126/science.abh1623.
4
Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation.
Mol Syst Biol. 2022 Mar;18(3):e10798. doi: 10.15252/msb.202110798.
5
Identification of Lipid Heterogeneity and Diversity in the Developing Human Brain.
JACS Au. 2021 Nov 11;1(12):2261-2270. doi: 10.1021/jacsau.1c00393. eCollection 2021 Dec 27.
6
Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging.
Nat Methods. 2022 Mar;19(3):284-295. doi: 10.1038/s41592-021-01316-y. Epub 2021 Nov 22.
7
Morphological diversity of single neurons in molecularly defined cell types.
Nature. 2021 Oct;598(7879):174-181. doi: 10.1038/s41586-021-03941-1. Epub 2021 Oct 6.
8
SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment.
Nat Methods. 2021 Oct;18(10):1223-1232. doi: 10.1038/s41592-021-01276-3. Epub 2021 Oct 4.
9
Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization.
Nat Methods. 2021 Oct;18(10):1233-1238. doi: 10.1038/s41592-021-01277-2. Epub 2021 Sep 30.
10
SpaceM reveals metabolic states of single cells.
Nat Methods. 2021 Jul;18(7):799-805. doi: 10.1038/s41592-021-01198-0. Epub 2021 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验