Suppr超能文献

基于深度学习的人脑癌光学相干断层扫描图像分析

Deep learning-based optical coherence tomography image analysis of human brain cancer.

作者信息

Wang Nathan, Lee Cheng-Yu, Park Hyeon-Cheol, Nauen David W, Chaichana Kaisorn L, Quinones-Hinojosa Alfredo, Bettegowda Chetan, Li Xingde

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Biomed Opt Express. 2022 Dec 7;14(1):81-88. doi: 10.1364/BOE.477311. eCollection 2023 Jan 1.

Abstract

Real-time intraoperative delineation of cancer and non-cancer brain tissues, especially in the eloquent cortex, is critical for thorough cancer resection, lengthening survival, and improving quality of life. Prior studies have established that thresholding optical attenuation values reveals cancer regions with high sensitivity and specificity. However, threshold of a single value disregards local information important to making more robust predictions. Hence, we propose deep convolutional neural networks (CNNs) trained on labeled OCT images and co-occurrence matrix features extracted from these images to synergize attenuation characteristics and texture features. Specifically, we adapt a deep ensemble model trained on 5,831 examples in a training dataset of 7 patients. We obtain 93.31% sensitivity and 97.04% specificity on a holdout set of 4 patients without the need for beam profile normalization using a reference phantom. The segmentation maps produced by parsing the OCT volume and tiling the outputs of our model are in excellent agreement with attenuation mapping-based methods. Our new approach for this important application has considerable implications for clinical translation.

摘要

实时术中区分癌性和非癌性脑组织,尤其是在明确的皮层中,对于彻底切除癌症、延长生存期和改善生活质量至关重要。先前的研究已经证实,通过对光学衰减值进行阈值处理能够以高灵敏度和特异性揭示癌症区域。然而,单一值的阈值忽略了对做出更可靠预测很重要的局部信息。因此,我们提出在标记的光学相干断层扫描(OCT)图像以及从这些图像中提取的共生矩阵特征上训练深度卷积神经网络(CNN),以整合衰减特征和纹理特征。具体而言,我们采用了在7名患者的训练数据集中的5831个示例上训练的深度集成模型。在4名患者的验证集上,我们无需使用参考体模进行光束轮廓归一化,就获得了93.31%的灵敏度和97.04%的特异性。通过解析OCT体积并平铺我们模型的输出所生成的分割图与基于衰减映射的方法高度一致。我们针对这一重要应用的新方法对临床转化具有重要意义。

相似文献

1
Deep learning-based optical coherence tomography image analysis of human brain cancer.
Biomed Opt Express. 2022 Dec 7;14(1):81-88. doi: 10.1364/BOE.477311. eCollection 2023 Jan 1.
2
OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
Graefes Arch Clin Exp Ophthalmol. 2018 Jan;256(1):91-98. doi: 10.1007/s00417-017-3839-y. Epub 2017 Nov 10.
3
Cervical optical coherence tomography image classification based on contrastive self-supervised texture learning.
Med Phys. 2022 Jun;49(6):3638-3653. doi: 10.1002/mp.15630. Epub 2022 Apr 13.
4
Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.
Neuroimage. 2015 Mar;108:214-24. doi: 10.1016/j.neuroimage.2014.12.061. Epub 2015 Jan 3.
5
Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
Comput Methods Programs Biomed. 2019 Jul;176:69-80. doi: 10.1016/j.cmpb.2019.04.027. Epub 2019 Apr 24.
9
Improving the Accuracy of Simultaneously Reconstructed Activity and Attenuation Maps Using Deep Learning.
J Nucl Med. 2018 Oct;59(10):1624-1629. doi: 10.2967/jnumed.117.202317. Epub 2018 Feb 15.
10
Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
Comput Methods Programs Biomed. 2020 Oct;195:105566. doi: 10.1016/j.cmpb.2020.105566. Epub 2020 May 26.

引用本文的文献

1
Leveraging pretrained vision transformers for automated cancer diagnosis in optical coherence tomography images.
Biomed Opt Express. 2025 Jul 21;16(8):3283-3294. doi: 10.1364/BOE.563694. eCollection 2025 Aug 1.
2
Optical coherence tomography-enabled classification of the human venoatrial junction.
J Biomed Opt. 2025 Jan;30(1):016005. doi: 10.1117/1.JBO.30.1.016005. Epub 2025 Jan 21.
3
Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.
Theranostics. 2025 Jan 1;15(1):122-140. doi: 10.7150/thno.97192. eCollection 2025.
4
Accurate attenuation characterization in optical coherence tomography using multi-reference phantoms and deep learning.
Biomed Opt Express. 2024 Nov 6;15(12):6697-6714. doi: 10.1364/BOE.543606. eCollection 2024 Dec 1.
6
Enhancing brain tumor classification in MRI scans with a multi-layer customized convolutional neural network approach.
Front Comput Neurosci. 2024 Jun 12;18:1418546. doi: 10.3389/fncom.2024.1418546. eCollection 2024.
7
Rapid detection of IDH mutations in gliomas by intraoperative mass spectrometry.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2318843121. doi: 10.1073/pnas.2318843121. Epub 2024 May 28.
8
Refining neural network algorithms for accurate brain tumor classification in MRI imagery.
BMC Med Imaging. 2024 May 21;24(1):118. doi: 10.1186/s12880-024-01285-6.
10
Introduction to the Optics and the Brain 2023 feature issue.
Biomed Opt Express. 2024 Mar 4;15(4):2110-2113. doi: 10.1364/BOE.517678. eCollection 2024 Apr 1.

本文引用的文献

2
assessment of inflammatory bowel disease in rats with ultrahigh-resolution colonoscopic OCT.
Biomed Opt Express. 2022 Mar 15;13(4):2091-2102. doi: 10.1364/BOE.453396. eCollection 2022 Apr 1.
3
Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases.
Int J Comput Assist Radiol Surg. 2021 Sep;16(9):1517-1526. doi: 10.1007/s11548-021-02412-2. Epub 2021 May 30.
4
AI-Assisted Detection of Human Glioma Infiltration Using a Novel Computational Method for Optical Coherence Tomography.
Clin Cancer Res. 2019 Nov 1;25(21):6329-6338. doi: 10.1158/1078-0432.CCR-19-0854. Epub 2019 Jul 17.
5
Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms.
Sci Rep. 2017 Dec 20;7(1):17912. doi: 10.1038/s41598-017-17398-8.
7
Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography.
Sci Transl Med. 2015 Jun 17;7(292):292ra100. doi: 10.1126/scitranslmed.3010611.
8
Characterizing optical properties of nano contrast agents by using cross-referencing OCT imaging.
Biomed Opt Express. 2013 May 9;4(6):842-51. doi: 10.1364/BOE.4.000842. Print 2013 Jun 1.
9
An extent of resection threshold for newly diagnosed glioblastomas.
J Neurosurg. 2011 Jul;115(1):3-8. doi: 10.3171/2011.2.jns10998. Epub 2011 Mar 18.
10
Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography.
Lasers Med Sci. 2010 Mar;25(2):259-67. doi: 10.1007/s10103-009-0723-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验