文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

重新编程全身和局部免疫功能,以增强免疫疗法治疗胶质母细胞瘤的效果。

Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma.

机构信息

Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Fudan University, 201203, Shanghai, China.

Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 201203, Shanghai, China.

出版信息

Nat Commun. 2023 Jan 26;14(1):435. doi: 10.1038/s41467-023-35957-8.


DOI:10.1038/s41467-023-35957-8
PMID:36702831
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9880004/
Abstract

The limited benefits of immunotherapy against glioblastoma (GBM) is closely related to the paucity of T cells in brain tumor bed. Both systemic and local immunosuppression contribute to the deficiency of tumor-infiltrating T cells. However, the current studies focus heavily on the local immunosuppressive tumor microenvironment but not on the co-existence of systemic immunosuppression. Here, we develop a nanostructure named Nano-reshaper to co-encapsulate lymphopenia alleviating agent cannabidiol and lymphocyte recruiting cytokine LIGHT. The results show that Nano-reshaper increases the number of systemic T cells and improves local T-cell recruitment condition, thus greatly increasing T-cell infiltration. When combined with immune checkpoint inhibitor, this therapeutic modality achieves 83.3% long-term survivors without recurrence in GBM models in male mice. Collectively, this work unveils that simultaneous reprogramming of systemic and local immune function is critical for T-cell based immunotherapy and provides a clinically translatable option for combating brain tumors.

摘要

免疫疗法治疗胶质母细胞瘤(GBM)的获益有限,这与脑肿瘤床中 T 细胞数量较少密切相关。全身性和局部免疫抑制均导致肿瘤浸润性 T 细胞的缺乏。然而,目前的研究主要集中在局部免疫抑制性肿瘤微环境上,而没有关注全身性免疫抑制的共存。在这里,我们开发了一种名为 Nano-reshaper 的纳米结构,用于共包封淋巴细胞减少缓解剂大麻二酚和淋巴细胞募集细胞因子 LIGHT。结果表明,Nano-reshaper 增加了系统 T 细胞的数量,并改善了局部 T 细胞募集条件,从而大大增加了 T 细胞浸润。当与免疫检查点抑制剂联合使用时,这种治疗方式在雄性小鼠的 GBM 模型中实现了 83.3%的长期无复发幸存者。总的来说,这项工作揭示了同时重塑系统和局部免疫功能对于基于 T 细胞的免疫疗法至关重要,并为对抗脑肿瘤提供了一种具有临床转化潜力的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/d446ab386e82/41467_2023_35957_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/0a9e48f01eec/41467_2023_35957_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/7fac5c990285/41467_2023_35957_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/41800df7f680/41467_2023_35957_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/ffcf00ed88aa/41467_2023_35957_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/c49930f80971/41467_2023_35957_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/a7be95abdf6a/41467_2023_35957_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/93f7b8d7db39/41467_2023_35957_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/d446ab386e82/41467_2023_35957_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/0a9e48f01eec/41467_2023_35957_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/7fac5c990285/41467_2023_35957_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/41800df7f680/41467_2023_35957_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/ffcf00ed88aa/41467_2023_35957_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/c49930f80971/41467_2023_35957_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/a7be95abdf6a/41467_2023_35957_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/93f7b8d7db39/41467_2023_35957_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4359/9880004/d446ab386e82/41467_2023_35957_Fig8_HTML.jpg

相似文献

[1]
Reprogramming systemic and local immune function to empower immunotherapy against glioblastoma.

Nat Commun. 2023-1-26

[2]
Small-molecule toosendanin reverses macrophage-mediated immunosuppression to overcome glioblastoma resistance to immunotherapy.

Sci Transl Med. 2023-2-15

[3]
Systemic high-dose dexamethasone treatment may modulate the efficacy of intratumoral viral oncolytic immunotherapy in glioblastoma models.

J Immunother Cancer. 2022-1

[4]
Recruiting T-Cells toward the Brain for Enhanced Glioblastoma Immunotherapeutic Efficacy by Co-Delivery of Cytokines and Immune Checkpoint Antibodies with Macrophage-Membrane-Camouflaged Nanovesicles.

Adv Mater. 2023-6

[5]
Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy.

Cancer Lett. 2021-1-1

[6]
Advances in Nanotechnology-Based Immunotherapy for Glioblastoma.

Front Immunol. 2022

[7]
Combination immunotherapy strategies for glioblastoma.

J Neurooncol. 2021-2

[8]
Local Targeting of NAD Salvage Pathway Alters the Immune Tumor Microenvironment and Enhances Checkpoint Immunotherapy in Glioblastoma.

Cancer Res. 2020-11-15

[9]
Phenotypic plasticity of myeloid cells in glioblastoma development, progression, and therapeutics.

Oncogene. 2021-10

[10]
Immunotherapy as a New Therapeutic Approach for Brain and Spinal Cord Tumors.

Adv Exp Med Biol. 2023

引用本文的文献

[1]
Advances and Challenges in Nano-Delivery Systems for Glioblastoma Treatment: A Comprehensive Review.

Int J Nanomedicine. 2025-8-4

[2]
Recent Advances in the Therapeutic Potential of Cannabinoids Against Gliomas: A Systematic Review (2022-2025).

Pharmacol Res Perspect. 2025-8

[3]
Advancing vaccine-based immunotherapy in glioblastoma treatment.

Neurooncol Adv. 2025-6-24

[4]
Glioma promotes macrophage immunosuppressive phenotype through ANXA1 in a methionine metabolism-dependent manner.

Discov Oncol. 2025-7-6

[5]
Recent developments in peptide vaccines against Glioblastoma, a review and update.

Mol Brain. 2025-6-13

[6]
ATP11B triggers the infiltration of T cells into GBM and intensifies anti-GBM immunity by upregulating and externalizing S1PR1.

J Transl Med. 2025-5-27

[7]
Genetically Engineered IL12/CSF1R-Macrophage Membrane-Liposome Hybrid Nanovesicles for NIR-II Fluorescence Imaging-Guided and Membrane-Targeted Mild Photothermal-Immunotherapy of Glioblastoma.

Adv Sci (Weinh). 2025-4-25

[8]
Unmasking the potential: mechanisms of neuroinflammatory modulation by oncolytic viruses in glioblastoma.

Explor Target Antitumor Ther. 2025-2-24

[9]
Blocking Feedback Immunosuppression of Antigen Presentation in Brain Tumor During Oncolytic Virotherapy with oHSV-mshPKR.

Mol Cancer Ther. 2025-3-4

[10]
BRD4 promotes immune escape of glioma cells by upregulating PD-L1 expression.

J Neurooncol. 2025-2

本文引用的文献

[1]
Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy.

Nat Commun. 2022-9-1

[2]
Targeting brain lesions of non-small cell lung cancer by enhancing CCL2-mediated CAR-T cell migration.

Nat Commun. 2022-4-20

[3]
Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment.

Nat Commun. 2022-4-6

[4]
Engineering interferons and interleukins for cancer immunotherapy.

Adv Drug Deliv Rev. 2022-3

[5]
T cell immune awakening in response to immunotherapy is age-dependent.

Eur J Cancer. 2022-2

[6]
Immunosuppression in Glioblastoma: Current Understanding and Therapeutic Implications.

Front Oncol. 2021-10-28

[7]
Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies.

Adv Drug Deliv Rev. 2021-12

[8]
Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40.

Nat Commun. 2021-6-8

[9]
Systemic metastasis-targeted nanotherapeutic reinforces tumor surgical resection and chemotherapy.

Nat Commun. 2021-5-27

[10]
Systemic immunity in cancer.

Nat Rev Cancer. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索