Suppr超能文献

基于深度学习的IgA肾病全切片图像中肾小球形态的定量分析及其预后意义。

Deep learning-based quantitative analysis of glomerular morphology in IgA nephropathy whole slide images and its prognostic implications.

作者信息

Cho Seung Yeon, Kim Yisak, Park Sehoon, Paik Jin Ho, Chin Ho Jun, Park Jeong Hwan, Lee Jung Pyo, Kim Yong-Jin, Park Sun-Hee, Lee Ho-Chang, Cho Hyunjeong, Lim Beom Jin, Kim Hyung Woo, Han Seung Hyeok, Go Heounjeong, Baek Chung Hee, Lee Hajeong, Moon Kyung Chul, Kim Young-Gon

机构信息

Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea.

Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 2;15(1):23566. doi: 10.1038/s41598-025-09031-w.

Abstract

Kidney pathology of immunoglobulin A nephropathy (IgAN), which is the key finding of both diagnosis and risk stratification, involves labor-intensive manual interpretation as well as unavoidable interpreter-dependent variabilities. We propose artificial intelligence-based frameworks for quantitatively analyzing glomerular histologic features that can predict kidney progression in IgAN. A deep learning model, based on DeepLabV3Plus and EfficientNet-B3, was developed for segmenting glomeruli and quantifying the morphological features by using digitized whole slide images from seven tertiary hospitals. Subsequently, it was used for machine learning-based risk prediction of IgAN progression. Its predictability was compared with the conventional clinicopathologic feature-based model to demonstrate its comparable performance. In total, 1,241 whole slide images were obtained. The weighted averages of average precision and dice similarity coefficient were 0.795 and 0.721 in internal validation and 0.818 and 0.743 in external validation, respectively. Interestingly, image features-only-based kidney outcome prediction models showed similar predictability compared with clinical features-only-based models. In addition, incorporating an image-based deep learning model into the clinical features-based models enhanced predictabilities, although insignificant. These results show that quantitative glomerular histologic features are comparable to clinical data, suggesting that they may offer additional prognostic insights not covered by Oxford classification or other clinical parameters.

摘要

免疫球蛋白A肾病(IgAN)的肾脏病理学检查是诊断和风险分层的关键依据,但这项工作需要耗费大量人力进行手工解读,且不可避免地存在因解读人员不同而产生的差异。我们提出了基于人工智能的框架,用于定量分析肾小球组织学特征,以预测IgAN的肾脏病变进展。基于DeepLabV3Plus和EfficientNet-B3开发了一种深度学习模型,通过使用来自七家三级医院的数字化全切片图像来分割肾小球并量化其形态特征。随后,该模型被用于基于机器学习的IgAN进展风险预测。将其预测能力与传统的基于临床病理特征的模型进行比较,以证明其具有可比的性能。总共获得了1241张全切片图像。内部验证中平均精度和骰子相似系数的加权平均值分别为0.795和0.721,外部验证中分别为0.818和0.743。有趣的是,仅基于图像特征的肾脏预后预测模型与仅基于临床特征的模型具有相似的预测能力。此外,将基于图像的深度学习模型纳入基于临床特征的模型中,虽然提升不显著,但增强了预测能力。这些结果表明,定量的肾小球组织学特征与临床数据具有可比性,这表明它们可能提供牛津分类或其他临床参数未涵盖的额外预后信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4e/12222963/d247e8614aea/41598_2025_9031_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验