Liu Yang, Goudie Robert J B
MRC Biostatistics Unit, University of Cambridge, UK.
Bayesian Anal. 2023 Jan 1;-1(-1):1-36. doi: 10.1214/22-BA1357.
Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability distribution on data. We present a Bayesian GWR model and show that its essence is dealing with partial misspecification of the model. Current modularized Bayesian inference models accommodate partial misspecification from a single component of the model. We extend these models to handle partial misspecification in more than one component of the model, as required for our Bayesian GWR model. Information from the various spatial locations is manipulated via a geographically weighted kernel and the optimal manipulation is chosen according to a Kullback-Leibler (KL) divergence. We justify the model via an information risk minimization approach and show the consistency of the proposed estimator in terms of a geographically weighted KL divergence.
地理加权回归(GWR)模型通过空间可变系数模型处理地理依赖性,并已在应用科学中广泛使用,但其一般的贝叶斯扩展尚不清楚,因为它涉及加权对数似然,这并不意味着数据上的概率分布。我们提出了一种贝叶斯GWR模型,并表明其本质是处理模型的部分错误设定。当前的模块化贝叶斯推理模型可处理来自模型单个组件的部分错误设定。我们扩展这些模型以处理模型多个组件中的部分错误设定,这是我们的贝叶斯GWR模型所需要的。来自不同空间位置的信息通过地理加权核进行处理,并根据库尔贝克-莱布勒(KL)散度选择最优处理。我们通过信息风险最小化方法对模型进行论证,并在地理加权KL散度方面证明了所提出估计量的一致性。