Suppr超能文献

孔蛋白预测:从全基因组测序数据中鉴定OprD缺失以改善铜绿假单胞菌碳青霉烯耐药性的基因型-表型预测

PorinPredict: Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance.

作者信息

Biggel Michael, Johler Sophia, Roloff Tim, Tschudin-Sutter Sarah, Bassetti Stefano, Siegemund Martin, Egli Adrian, Stephan Roger, Seth-Smith Helena M B

机构信息

Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.

Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.

出版信息

Microbiol Spectr. 2023 Jan 30;11(2):e0358822. doi: 10.1128/spectrum.03588-22.

Abstract

The increasing integration of genomics into routine clinical diagnostics requires reliable computational tools to identify determinants of antimicrobial resistance (AMR) from whole-genome sequencing data. Here, we developed PorinPredict, a bioinformatic tool that predicts defects of the Pseudomonas aeruginosa outer membrane porin OprD, which are strongly associated with reduced carbapenem susceptibility. PorinPredict relies on a database of intact OprD variants and reports inactivating mutations in the coding or promoter region. PorinPredict was validated against 987 carbapenemase-negative P. aeruginosa genomes, of which OprD loss was predicted for 454 out of 522 (87.0%) meropenem-nonsusceptible and 46 out of 465 (9.9%) meropenem-susceptible isolates. OprD loss was also found to be common among carbapenemase-producing isolates, resulting in even further increased MICs. Chromosomal mutations in quinolone resistance-determining regions and OprD loss commonly co-occurred, likely reflecting the restricted use of carbapenems for multidrug-resistant infections as recommended in antimicrobial stewardship programs. In combination with available AMR gene detection tools, PorinPredict provides a robust and standardized approach to link P. aeruginosa phenotypes to genotypes. Pseudomonas aeruginosa is a major cause of multidrug-resistant nosocomial infections. The emergence and spread of clones exhibiting resistance to carbapenems, a class of critical last-line antibiotics, is therefore closely monitored. Carbapenem resistance is frequently mediated by chromosomal mutations that lead to a defective outer membrane porin OprD. Here, we determined the genetic diversity of OprD variants across the P. aeruginosa population and developed PorinPredict, a bioinformatic tool that enables the prediction of OprD loss from whole-genome sequencing data. We show a high correlation between predicted OprD loss and meropenem nonsusceptibility irrespective of the presence of carbapenemases, which are a second widespread determinant of carbapenem resistance. Isolates with resistance determinants to other antibiotics were disproportionally affected by OprD loss, possibly due to an increased exposure to carbapenems. Integration of PorinPredict into genomic surveillance platforms will facilitate a better understanding of the clinical impact of OprD modifications and transmission dynamics of resistant clones.

摘要

基因组学日益融入常规临床诊断,这需要可靠的计算工具从全基因组测序数据中识别抗菌药物耐药性(AMR)的决定因素。在此,我们开发了PorinPredict,这是一种生物信息学工具,可预测铜绿假单胞菌外膜孔蛋白OprD的缺陷,这些缺陷与碳青霉烯类药物敏感性降低密切相关。PorinPredict依赖于完整OprD变体的数据库,并报告编码区或启动子区域的失活突变。PorinPredict针对987个碳青霉烯酶阴性的铜绿假单胞菌基因组进行了验证,在522株美罗培南不敏感菌株中有454株(87.0%)以及在465株美罗培南敏感菌株中有46株(9.9%)预测存在OprD缺失。在产碳青霉烯酶的分离株中也发现OprD缺失很常见,这导致最低抑菌浓度(MIC)进一步升高。喹诺酮耐药决定区的染色体突变和OprD缺失通常同时出现,这可能反映了抗菌药物管理计划中推荐的碳青霉烯类药物在多重耐药感染中的使用受限。与现有的AMR基因检测工具相结合,PorinPredict提供了一种强大且标准化的方法,将铜绿假单胞菌的表型与基因型联系起来。铜绿假单胞菌是多重耐药医院感染的主要原因。因此,对碳青霉烯类药物(一类关键的最后一线抗生素)耐药的克隆的出现和传播受到密切监测。碳青霉烯类耐药通常由导致外膜孔蛋白OprD缺陷的染色体突变介导。在此,我们确定了铜绿假单胞菌群体中OprD变体的遗传多样性,并开发了PorinPredict,这是一种生物信息学工具,能够从全基因组测序数据中预测OprD缺失。我们发现,无论是否存在碳青霉烯酶(碳青霉烯类耐药的另一个广泛决定因素),预测的OprD缺失与美罗培南不敏感性之间都存在高度相关性。对其他抗生素有耐药决定因素的分离株受OprD缺失的影响不成比例,这可能是由于碳青霉烯类药物暴露增加所致。将PorinPredict整合到基因组监测平台中将有助于更好地理解OprD修饰的临床影响以及耐药克隆的传播动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9de/10100854/e3660afe88bb/spectrum.03588-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验